Explainable Fuzzy AI Challenge 2022 : Winner’s Approach to a Computationally Efficient and Explainable Solution
Mishra, S., Shukla, A. K., & Muhuri, P. K. (2022). Explainable Fuzzy AI Challenge 2022 : Winner’s Approach to a Computationally Efficient and Explainable Solution. Axioms, 11(10), Article 489. https://doi.org/10.3390/axioms11100489
Julkaistu sarjassa
AxiomsPäivämäärä
2022Oppiaine
Laskennallinen tiedeComputing, Information Technology and MathematicsComputational ScienceComputing, Information Technology and MathematicsTekijänoikeudet
© 2022 by the authors. Licensee MDPI, Basel, Switzerland
An explainable artificial intelligence (XAI) agent is an autonomous agent that uses a fundamental XAI model at its core to perceive its environment and suggests actions to be performed. One of the significant challenges for these XAI agents is performing their operation efficiently, which is governed by the underlying inference and optimization system. Along similar lines, an Explainable Fuzzy AI Challenge (XFC 2022) competition was launched, whose principal objective was to develop a fully autonomous and optimized XAI algorithm that could play the Python arcade game “Asteroid Smasher”. This research first investigates inference models to implement an efficient (XAI) agent using rule-based fuzzy systems. We also discuss the proposed approach (which won the competition) to attain efficiency in the XAI algorithm. We have explored the potential of the widely used Mamdani- and TSK-based fuzzy inference systems and investigated which model might have a more optimized implementation. Even though the TSK-based model outperforms Mamdani in several applications, no empirical evidence suggests this will also be applicable in implementing an XAI agent. The experimentations are then performed to find a better-performing inference system in a fast-paced environment. The thorough analysis recommends more robust and efficient TSK-based XAI agents than Mamdani-based fuzzy inference systems.
...
Julkaisija
MDPI AGISSN Hae Julkaisufoorumista
2075-1680Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/160490094
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research received no external funding.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Self-management in distributed systems : smart adaptive framework for pervasive computing environments
Nagy, Michal (University of Jyväskylä, 2013) -
Data-driven Interactive Multiobjective Optimization : Challenges and a Generic Multi-agent Architecture
Afsar, Bekir; Podkopaev, Dmitry; Miettinen, Kaisa (Elsevier BV, 2020)In many decision making problems, a decision maker needs computer support in finding a good compromise between multiple conflicting objectives that need to be optimized simultaneously. Interactive multiobjective optimization ... -
Forms of determination in natural and artificial systems
Karvonen, Antero (2018)Tutkielman tarkoitus on arvioida autonomisen teknologian ja keinoälyn taustalle vallitsevia olettamuksia perusteanalyyttisestä näkökulmasta käyttäen autonomisia laivoja kontekstina. Teoreettinen tutkielma on kriittinen, ... -
Memory-saving optimization algorithms for systems with limited hardware
Iacca, Giovanni (University of Jyväskylä, 2011) -
Dynamic aspects of industrial middleware architectures
Nikitin, Sergiy (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.