Näytä suppeat kuvailutiedot

dc.contributor.authorHyttinen, Noora
dc.contributor.authorPihlajamäki, Antti
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2022-11-11T09:02:40Z
dc.date.available2022-11-11T09:02:40Z
dc.date.issued2022
dc.identifier.citationHyttinen, N., Pihlajamäki, A., & Häkkinen, H. (2022). Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions. <i>Journal of Physical Chemistry Letters</i>, <i>13</i>(42), 9928-9933. <a href="https://doi.org/10.1021/acs.jpclett.2c02612" target="_blank">https://doi.org/10.1021/acs.jpclett.2c02612</a>
dc.identifier.otherCONVID_159359404
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83856
dc.description.abstractWe have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The model is able to predict chemical potentials of molecules that are in the size range of the training data with a root-mean-square error (RMSE) of 0.5 kcal/mol. There is also a linear correlation between calculated and predicted chemical potentials of molecules that are larger than those included in the training set. Finding the lowest chemical potential conformers is useful in condensed phase thermodynamic property calculations, in order to reduce the number of computationally demanding density functional theory calculations.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesJournal of Physical Chemistry Letters
dc.rightsCC BY 4.0
dc.titleMachine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202211115154
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange9928-9933
dc.relation.issn1948-7185
dc.relation.numberinseries42
dc.relation.volume13
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber338171
dc.subject.ysoilmakemia
dc.subject.ysopotentiaalienergia
dc.subject.ysoorgaaniset yhdisteet
dc.subject.ysotermodynamiikka
dc.subject.ysolämpökemia
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysokoneoppiminen
dc.subject.ysolaskennallinen kemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26207
jyx.subject.urihttp://www.yso.fi/onto/yso/p17455
jyx.subject.urihttp://www.yso.fi/onto/yso/p3841
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p18857
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.jpclett.2c02612
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationN.H. gratefully acknowledges the financial contribution from the Academy of Finland, Grant No. 338171. The study was also supported by the Jenny and Antti Wihuri Foundation via personal funding to A.P. We thank the CSC - IT Center for Science, Finland, and the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) for computational resources.
datacite.isSupplementedBy.doi10.17011/jyx/dataset/83604
datacite.isSupplementedByHyttinen, Noora. (2022). <i>Supplementary data for the article "Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions"</i>. University of Jyväskylä. <a href="https://doi.org/10.17011/jyx/dataset/83604" target="_blank">https://doi.org/10.17011/jyx/dataset/83604</a>. <a href="http://urn.fi/URN:NBN:fi:jyu-202210194924">https://urn.fi/URN:NBN:fi:jyu-202210194924</a>
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0