dc.contributor.author | Hyttinen, Noora | |
dc.contributor.author | Pihlajamäki, Antti | |
dc.contributor.author | Häkkinen, Hannu | |
dc.date.accessioned | 2022-11-11T09:02:40Z | |
dc.date.available | 2022-11-11T09:02:40Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Hyttinen, N., Pihlajamäki, A., & Häkkinen, H. (2022). Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions. <i>Journal of Physical Chemistry Letters</i>, <i>13</i>(42), 9928-9933. <a href="https://doi.org/10.1021/acs.jpclett.2c02612" target="_blank">https://doi.org/10.1021/acs.jpclett.2c02612</a> | |
dc.identifier.other | CONVID_159359404 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83856 | |
dc.description.abstract | We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The model is able to predict chemical potentials of molecules that are in the size range of the training data with a root-mean-square error (RMSE) of 0.5 kcal/mol. There is also a linear correlation between calculated and predicted chemical potentials of molecules that are larger than those included in the training set. Finding the lowest chemical potential conformers is useful in condensed phase thermodynamic property calculations, in order to reduce the number of computationally demanding density functional theory calculations. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Journal of Physical Chemistry Letters | |
dc.rights | CC BY 4.0 | |
dc.title | Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202211115154 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 9928-9933 | |
dc.relation.issn | 1948-7185 | |
dc.relation.numberinseries | 42 | |
dc.relation.volume | 13 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Authors. Published by American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 338171 | |
dc.subject.yso | ilmakemia | |
dc.subject.yso | potentiaalienergia | |
dc.subject.yso | orgaaniset yhdisteet | |
dc.subject.yso | termodynamiikka | |
dc.subject.yso | lämpökemia | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | laskennallinen kemia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26207 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17455 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3841 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14558 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18857 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23053 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acs.jpclett.2c02612 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | N.H. gratefully acknowledges the financial contribution from the Academy of Finland, Grant No. 338171. The study was also supported by the Jenny and Antti Wihuri Foundation via personal funding to A.P. We thank the CSC - IT Center for Science, Finland, and the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) for computational resources. | |
datacite.isSupplementedBy.doi | 10.17011/jyx/dataset/83604 | |
datacite.isSupplementedBy | Hyttinen, Noora. (2022). <i>Supplementary data for the article "Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions"</i>. University of Jyväskylä. <a href="https://doi.org/10.17011/jyx/dataset/83604" target="_blank">https://doi.org/10.17011/jyx/dataset/83604</a>. <a href="http://urn.fi/URN:NBN:fi:jyu-202210194924">https://urn.fi/URN:NBN:fi:jyu-202210194924</a> | |
dc.type.okm | A1 | |