Näytä suppeat kuvailutiedot

dc.contributor.authorDuman, Deniz
dc.contributor.authorNeto, Pedro
dc.contributor.authorMavrolampados, Anastasios
dc.contributor.authorToiviainen, Petri
dc.contributor.authorLuck, Geoff
dc.contributor.editorGrahn Jessica Adrienne
dc.date.accessioned2022-10-21T11:16:54Z
dc.date.available2022-10-21T11:16:54Z
dc.date.issued2022
dc.identifier.citationDuman, D., Neto, P., Mavrolampados, A., Toiviainen, P., & Luck, G. (2022). Music we move to : Spotify audio features and reasons for listening. <i>PLoS ONE</i>, <i>17</i>(9), Article e0275228. <a href="https://doi.org/10.1371/journal.pone.0275228" target="_blank">https://doi.org/10.1371/journal.pone.0275228</a>
dc.identifier.otherCONVID_159223486
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83625
dc.description.abstractPrevious literature has shown that music preferences (and thus preferred musical features) differ depending on the listening context and reasons for listening (RL). Yet, to our knowledge no research has investigated how features of music that people dance or move to relate to particular RL. Consequently, in two online surveys, participants (N = 173) were asked to name songs they move to (“dance music”). Additionally, participants (N = 105) from Survey 1 provided RL for their selected songs. To investigate relationships between the two, we first extracted audio features from dance music using the Spotify API and compared those features with a baseline dataset that is considered to represent music in general. Analyses revealed that, compared to the baseline, the dance music dataset had significantly higher levels of energy, danceability, valence, and loudness, and lower speechiness, instrumentalness and acousticness. Second, to identify potential subgroups of dance music, a cluster analysis was performed on its Spotify audio features. Results of this cluster analysis suggested five subgroups of dance music with varying combinations of Spotify audio features: “fast-lyrical”, “sad-instrumental”, “soft-acoustic”, “sad-energy”, and “happy-energy”. Third, a factor analysis revealed three main RL categories: “achieving self-awareness”, “regulation of arousal and mood”, and “expression of social relatedness”. Finally, we identified variations in people’s RL ratings for each subgroup of dance music. This suggests that certain characteristics of dance music are more suitable for listeners’ particular RL, which shape their music preferences. Importantly, the highest-rated RL items for dance music belonged to the “regulation of mood and arousal” category. This might be interpreted as the main function of dance music. We hope that future research will elaborate on connections between musical qualities of dance music and particular music listening functions.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofseriesPLoS ONE
dc.rightsCC BY 4.0
dc.titleMusic we move to : Spotify audio features and reasons for listening
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202210214941
dc.contributor.laitosMusiikin, taiteen ja kulttuurin tutkimuksen laitosfi
dc.contributor.laitosDepartment of Music, Art and Culture Studiesen
dc.contributor.oppiaineMusiikkitiedefi
dc.contributor.oppiaineMusicologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1932-6203
dc.relation.numberinseries9
dc.relation.volume17
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 Duman et al.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber346210
dc.subject.ysotanssi
dc.subject.ysogenret
dc.subject.ysotunteet
dc.subject.ysomieltymykset
dc.subject.ysomusiikkianalyysi
dc.subject.ysotanssimusiikki
dc.subject.ysoelektroninen tanssimusiikki
dc.subject.ysomusiikkipsykologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1278
jyx.subject.urihttp://www.yso.fi/onto/yso/p17134
jyx.subject.urihttp://www.yso.fi/onto/yso/p3485
jyx.subject.urihttp://www.yso.fi/onto/yso/p22910
jyx.subject.urihttp://www.yso.fi/onto/yso/p19623
jyx.subject.urihttp://www.yso.fi/onto/yso/p181
jyx.subject.urihttp://www.yso.fi/onto/yso/p29932
jyx.subject.urihttp://www.yso.fi/onto/yso/p13805
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1371/journal.pone.0275228
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundinginformationPT received salary from the Academy of Finland (project 346210) and PN by Finnish National Agency for Education (project 6600A-C1012). However, the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors received no other specific funding for this work.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0