Näytä suppeat kuvailutiedot

dc.contributor.advisorGeiss, Christel
dc.contributor.authorSimola, Tapani
dc.date.accessioned2022-10-03T06:32:20Z
dc.date.available2022-10-03T06:32:20Z
dc.date.issued2022
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83411
dc.description.abstractIn this thesis we inspect the prospective reserve of a life insurance contract. The objective is to generalize the concepts from the Markovian framework into the non-Markovian setting. A Markov process has independent increments which is not assumed for pure jump processes. The changes of the state of the life insurance contract can therefore posses dependencies among themselves. The prospective reserve will have a backward stochastic differential equation representation even in the non-Markovian setting. Furthermore we will consider the case of non-linear reserving where the payment process is allowed to be depended on the prospective reserve. This occurs under contract modifications where the current premium reserve is utilized to cover the liabilities induced by the modification and the rest is viewed as the assets of the customer. In other words the charged premiums in the life insurance contract are allowed to be calculated utilizing the present expected premium reserve as a part of the payment process. This creates a iterative cycle which questions the validity of the definition of the prospective reserve. The main theorems in this thesis are analogous extensions of the Thiele equation and the Cantelli Theorem to the non-Markovian setting. The Thiele equation is utilized to prove the BSDE representation for the prospective reserve and the Cantelli Theorem yields means to sustain the actuarial equivalence at contract modifications. Lastly we construct a lot of theory around jump processes, their compensators and compensated martingales even providing an explicit formula for the stochastic intensities and an Itˆo type of isometry for the compensated jump processes. We also prove an explicit solution to the Martingale Representation Theorem for a specific type of a stochastic process, which is applied to the prospective reserve.en
dc.format.extent66
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subject.otherjump process
dc.subject.otherprospective reserve
dc.subject.otherBSDE
dc.subject.othermartingale representation
dc.subject.otherito isometry
dc.subject.otherexplicit intensity
dc.titleThe prospective reserve of a life insurance contract with modifications in a Non-Markovian setting
dc.identifier.urnURN:NBN:fi:jyu-202210034763
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineStokastiikka ja todennäköisyysteoriafi
dc.contributor.oppiaineStochastics and Probabilityen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysomatematiikka
dc.subject.ysohenkivakuutus
dc.subject.ysovakuutussopimukset
dc.subject.ysovakuutusmatematiikka
dc.subject.ysovakuutus
dc.subject.ysoprosessit
dc.subject.ysomathematics
dc.subject.ysolife insurance
dc.subject.ysoinsurance contracts
dc.subject.ysoinsurance mathematics
dc.subject.ysoinsurance
dc.subject.ysoprocesses
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot