Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors

Abstract
SbOx thin films are deposited by atomic layer deposition (ALD) using SbCl5 and Sb(NMe2)3 as antimony reactants and H2O and H2O2 as oxidizers at low temperatures. SbCl5 can react with both oxidizers, while no deposition is found to occur using Sb(NMe2)3 and H2O. For the first time, the reaction mechanism and dielectric properties of ALD-SbOx thin films are systematically studied, which exhibit a high breakdown field of ≈4 MV cm−1 and high areal capacitance ranging from 150 to 200 nF cm−2, corresponding to a dielectric constant ranging from 10 to 13. The ZnO semiconductor layer is integrated into a SbOx dielectric layer, and thin film transistors (TFTs) are successfully fabricated. A TFT with a SbOx dielectric layer deposited at 200 °C from Sb(NMe2)3 and H2O2 presents excellent performance, such as a field effect mobility (µ) of 12.4 cm2 V−1 s−1, Ion/Ioff ratio of 4 × 108, subthreshold swing of 0.22 V dec−1, and a trapping state (Ntrap) of 1.1 × 1012 eV−1 cm−2. The amorphous structure and high areal capacitance of SbOx boosts the interface between the semiconductor and dielectric layer of TFT devices and provide a strong electric field for electrons to improve the device mobility.
Main Authors
Format
Articles Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
Wiley-VCH Verlag
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202208254328Use this for linking
Review status
Peer reviewed
ISSN
2199-160X
DOI
https://doi.org/10.1002/aelm.202101334
Language
English
Published in
Advanced Electronic Materials
Citation
  • Yang, J., Bahrami, A., Ding, X., Zhao, P., He, S., Lehmann, S., Laitinen, M., Julin, J., Kivekäs, M., Sajavaara, T., & Nielsch, K. (2022). Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors. Advanced Electronic Materials, 8(7), Article 2101334. https://doi.org/10.1002/aelm.202101334
License
CC BY-NC-ND 4.0Open Access
Funder(s)
European Commission
Funding program(s)
Research infrastructures, H2020
Research infrastructures, H2020
European Commission
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.
Additional information about funding
This work was supported by the Program of Collaborative Research Centers in Germany (Grant No. SFB 1415). The research leading to this result was supported by the RADIATE project under the Grant Agreement No. 824096 from the EU Research and Innovation program HORIZON 2020. A.B. also acknowledges the Alexander von Humboldt-Stiftung for Postdoctoral Research Fellow funding. Special thanks to Dr. Heiko Reith for technical assistance and Ronald Uhlemann for preparation of the illustrations.Open access funding enabled and organized by Projekt DEAL.
Copyright© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH.

Share