Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors
dc.contributor.author | Yang, Jun | |
dc.contributor.author | Bahrami, Amin | |
dc.contributor.author | Ding, Xingwei | |
dc.contributor.author | Zhao, Panpan | |
dc.contributor.author | He, Shiyang | |
dc.contributor.author | Lehmann, Sebastian | |
dc.contributor.author | Laitinen, Mikko | |
dc.contributor.author | Julin, Jaakko | |
dc.contributor.author | Kivekäs, Mikko | |
dc.contributor.author | Sajavaara, Timo | |
dc.contributor.author | Nielsch, Kornelius | |
dc.date.accessioned | 2022-08-25T05:12:26Z | |
dc.date.available | 2022-08-25T05:12:26Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Yang, J., Bahrami, A., Ding, X., Zhao, P., He, S., Lehmann, S., Laitinen, M., Julin, J., Kivekäs, M., Sajavaara, T., & Nielsch, K. (2022). Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors. <i>Advanced Electronic Materials</i>, <i>8</i>(7), Article 2101334. <a href="https://doi.org/10.1002/aelm.202101334" target="_blank">https://doi.org/10.1002/aelm.202101334</a> | |
dc.identifier.other | CONVID_104537912 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82795 | |
dc.description.abstract | SbOx thin films are deposited by atomic layer deposition (ALD) using SbCl5 and Sb(NMe2)3 as antimony reactants and H2O and H2O2 as oxidizers at low temperatures. SbCl5 can react with both oxidizers, while no deposition is found to occur using Sb(NMe2)3 and H2O. For the first time, the reaction mechanism and dielectric properties of ALD-SbOx thin films are systematically studied, which exhibit a high breakdown field of ≈4 MV cm−1 and high areal capacitance ranging from 150 to 200 nF cm−2, corresponding to a dielectric constant ranging from 10 to 13. The ZnO semiconductor layer is integrated into a SbOx dielectric layer, and thin film transistors (TFTs) are successfully fabricated. A TFT with a SbOx dielectric layer deposited at 200 °C from Sb(NMe2)3 and H2O2 presents excellent performance, such as a field effect mobility (µ) of 12.4 cm2 V−1 s−1, Ion/Ioff ratio of 4 × 108, subthreshold swing of 0.22 V dec−1, and a trapping state (Ntrap) of 1.1 × 1012 eV−1 cm−2. The amorphous structure and high areal capacitance of SbOx boosts the interface between the semiconductor and dielectric layer of TFT devices and provide a strong electric field for electrons to improve the device mobility. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley-VCH Verlag | |
dc.relation.ispartofseries | Advanced Electronic Materials | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | atomic layer deposition | |
dc.subject.other | high-k dielectric | |
dc.subject.other | low temperature | |
dc.subject.other | oxide semiconductor | |
dc.subject.other | ToF-ERDA | |
dc.title | Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208254328 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Physics | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2199-160X | |
dc.relation.numberinseries | 7 | |
dc.relation.volume | 8 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 824096 | |
dc.relation.grantnumber | 824096 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/824096/EU//RADIATE | |
dc.subject.yso | oksidit | |
dc.subject.yso | atomikerroskasvatus | |
dc.subject.yso | antimoni | |
dc.subject.yso | kylmäfysiikka | |
dc.subject.yso | transistorit | |
dc.subject.yso | ohutkalvot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27468 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19103 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5010 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16104 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16644 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1002/aelm.202101334 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Research infrastructures, H2020 | en |
jyx.fundingprogram | Research infrastructures, H2020 | fi |
jyx.fundinginformation | This work was supported by the Program of Collaborative Research Centers in Germany (Grant No. SFB 1415). The research leading to this result was supported by the RADIATE project under the Grant Agreement No. 824096 from the EU Research and Innovation program HORIZON 2020. A.B. also acknowledges the Alexander von Humboldt-Stiftung for Postdoctoral Research Fellow funding. Special thanks to Dr. Heiko Reith for technical assistance and Ronald Uhlemann for preparation of the illustrations.Open access funding enabled and organized by Projekt DEAL. | |
dc.type.okm | A1 |