Show simple item record

dc.contributor.authorNobili, Francesco
dc.contributor.authorViolo, Ivan Yuri
dc.date.accessioned2022-08-17T07:28:04Z
dc.date.available2022-08-17T07:28:04Z
dc.date.issued2022
dc.identifier.citationNobili, F., & Violo, I. Y. (2022). Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds. <i>Calculus of Variations and Partial Differential Equations</i>, <i>61</i>(5), Article 180. <a href="https://doi.org/10.1007/s00526-022-02284-7" target="_blank">https://doi.org/10.1007/s00526-022-02284-7</a>
dc.identifier.otherCONVID_148958317
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82624
dc.description.abstractWe prove that if M is a closed n-dimensional Riemannian manifold, n \ge 3, with \mathrm{Ric}\ge n-1 and for which the optimal constant in the critical Sobolev inequality equals the one of the n-dimensional sphere \mathbb {S}^n, then M is isometric to \mathbb {S}^n. An almost-rigidity result is also established, saying that if equality is almost achieved, then M is close in the measure Gromov–Hausdorff sense to a spherical suspension. These statements are obtained in the \mathrm {RCD}-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sobolev inequality on any compact \mathrm {CD} space, extending to the non-smooth setting a classical result by Aubin. Our arguments are based on a new concentration compactness result for mGH-converging sequences of \mathrm {RCD} spaces and on a Pólya–Szegő inequality of Euclidean-type in \mathrm {CD} spaces. As an application of the technical tools developed we prove both an existence result for the Yamabe equation and the continuity of the generalized Yamabe constant under measure Gromov–Hausdorff convergence, in the \mathrm {RCD}-setting.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesCalculus of Variations and Partial Differential Equations
dc.rightsCC BY 4.0
dc.titleRigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208174168
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0944-2669
dc.relation.numberinseries5
dc.relation.volume61
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoRiemannin monistot
dc.subject.ysomatematiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39163
jyx.subject.urihttp://www.yso.fi/onto/yso/p3160
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00526-022-02284-7
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0