dc.contributor.author | Krupchyk, Katya | |
dc.contributor.author | Liimatainen, Tony | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2022-07-19T13:04:48Z | |
dc.date.available | 2022-07-19T13:04:48Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Krupchyk, K., Liimatainen, T., & Salo, M. (2022). Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds. <i>Advances in Mathematics</i>, <i>403</i>, Article 108362. <a href="https://doi.org/10.1016/j.aim.2022.108362" target="_blank">https://doi.org/10.1016/j.aim.2022.108362</a> | |
dc.identifier.other | CONVID_148933505 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82386 | |
dc.description.abstract | In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calderón problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the transversal manifold, with exponentially small errors, as well as the FBI transform characterization of the analytic wave front set. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Inc. | |
dc.relation.ispartofseries | Advances in Mathematics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | inverse problems | |
dc.subject.other | Riemannian manifold | |
dc.subject.other | conformally transversally anisotropic | |
dc.subject.other | Gaussian quasimodes | |
dc.subject.other | WKB construction | |
dc.subject.other | wave front set | |
dc.title | Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202207193948 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0001-8708 | |
dc.relation.volume | 403 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | inversio-ongelmat | |
dc.subject.yso | Riemannin monistot | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39163 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.aim.2022.108362 | |
dc.type.okm | A1 | |