The NEXT Project : Towards Production and Investigation of Neutron-Rich Heavy Nuclides
Even, J., Chen, X., Soylu, A., Fischer, P., Karpov, A., Saiko, V., Saren, J., Schlaich, M., Schlathölter, T., Schweikhard, L., Uusitalo, J., & Wienholtz, F. (2022). The NEXT Project : Towards Production and Investigation of Neutron-Rich Heavy Nuclides. Atoms, 10(2), Article 59. https://doi.org/10.3390/atoms10020059
Published in
AtomsAuthors
Date
2022Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
The heaviest actinide elements are only accessible in accelerator-based experiments on a one-atom-at-a-time level. Usually, fusion–evaporation reactions are applied to reach these elements. However, access to the neutron-rich isotopes is limited. An alternative reaction mechanism to fusion–evaporation is multinucleon transfer, which features higher cross-sections. The main drawback of this technique is the wide angular distribution of the transfer products, which makes it challenging to catch and prepare them for precision measurements. To overcome this obstacle, we are building the NEXT experiment: a solenoid magnet is used to separate the different transfer products and to focus those of interest into a gas-catcher, where they are slowed down. From the gas-catcher, the ions are transferred and bunched by a stacked-ring ion guide into a multi-reflection time-of-flight mass spectrometer (MR-ToF MS). The MR-ToF MS provides isobaric separation and allows for precision mass measurements. In this article, we will give an overview of the NEXT experiment and its perspectives for future actinide research.
...
Publisher
MDPI AGISSN Search the Publication Forum
2218-2004Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/146497438
Metadata
Show full item recordCollections
Additional information about funding
This research was funded by the European Research Council Executive Agency (ERCEA), under the powers delegated by the European Commission through a starting grant number 803740-NEXT-ERC-2018-STGLicense
Related items
Showing items with similar title or keywords.
-
The study of neutron-rich nuclei production in the region of the closed shell N=126 in the multi-nucleon transfer reaction 136Xe+208Pb
Novikov, K.; Harca, I.M.; Kozulin, E.M.; Dmitriev, S.; Itkis, J.; Knyazheva, G.; Loktev, T.; Corradi, L.; Valiente-Dobon, J.; Fioretto, E.; Montanari, D.; Stefanini, A.M.; Vardaci, E.; Quero, D.; Montagnoli, G.; Scarlassara, F.; Strano, E.; Pollarolo, G.; Piot, J.; Mijatović, T.; Szilner, S.; Ackermann, D.; Chubarian, G.; Trzaska, Wladyslaw (Institute of Physics Publishing Ltd., 2016)The unexplored area of heavy neutron rich nuclei is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleogenesis. For the production ... -
Mass measurements of neutron-rich A≈90 nuclei constrain element abundances
Xian, W.; Chen, S.; Nikas, S.; Rosenbusch, M.; Wada, M.; Ishiyama, H.; Hou, D.; Iimura, S.; Nishimura, S.; Schury, P.; Takamine, A.; Yan, S.; Browne, F.; Doornenbal, P.; Flavigny, F.; Hirayama, Y.; Ito, Y.; Kimura, S.; Kojima T., M.; Lee, J.; Liu, J.; Miyatake, H.; Michimasa, S.; Moon J., Y.; Naimi, S.; Niwase, T.; Sonoda, T.; Suzuki, D.; Watanabe Y., X.; Werner, V.; Wimmer, K.; Wollnik, H. (American Physical Society (APS), 2024)Atomic masses of the neutron-rich isotopes 83,84Ga, 82–86Ge, 82–89As, 82,84–91Se, 85,86,89–92Br, 89,91,92Kr, and 91Rb have been measured with high precision and accuracy using the multi-reflection time-of-flight mass ... -
A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Mallaburn, M.J.; Singh, B.S. Nara; Cullen, D. M.; Hodge, D.; Taylor, M.J.; Giles, M.M.; Barber, L.; Niţă, C.R.; Mihai, R.E.; Mihai, C.; Mărginean, R.; Mărginean, N.; Nobs, C.R.; Gamba, E.R.; Bruce, A.M.; Scholey, Catherine; Rahkila, Panu; Greenlees, Paul; Badran, Hussam; Grahn, Tuomas; Neuvonen, O.; Auranen, Kalle; Bisso, F.; Cox, Daniel; Herzan, Andrej; Julin, Rauno; Konki, Joonas; Lightfoot, A.K.; Pakarinen, Janne; Papadakis, P.; Partanen, Jari; Sandzelius, Mikael; Sarén, Jan; Sorri, Juha; Stolze, Sanna; Uusitalo, Juha; Regan, P.H.; Podolyák, Zs.; Lalkovski, S.; Smith, J.F.; Smolen, M. (Elsevier; North-Holland, 2019)Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the ... -
The JUROGAM 3 spectrometer
Pakarinen, J.; Ojala, J.; Ruotsalainen, P.; Tann, H.; Badran, H.; Calverley, T.; Hilton, J.; Grahn, T.; Greenlees, P. T.; Hytönen, M.; Illana, A.; Kauppinen, A.; Luoma, M.; Papadakis, P.; Partanen, J.; Porras, K.; Puskala, M.; Rahkila, P.; Ranttila, K.; Sarén, J.; Sandzelius, M.; Szwec, S.; Tuunanen, J.; Uusitalo, J.; Zimba, G. (Springer, 2020)The JUROGAM 3 spectrometer has been constructed for in-beam γ-ray spectroscopy experiments in the Accelerator Laboratory of the University of Jyväskylä, Finland. JUROGAM 3 consists of germanium-detector modules in a compact ... -
Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer
Nesterenko, Dmitrii; Eronen, Tommi; Kankainen, Anu; Canete, Laetitia; Jokinen, Ari; Moore, Iain; Penttilä, Heikki; Rinta-Antila, Sami; de Roubin, Antoine; Vilén, Markus (Springer, 2018)The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a ...