The NEXT Project : Towards Production and Investigation of Neutron-Rich Heavy Nuclides

Abstract
The heaviest actinide elements are only accessible in accelerator-based experiments on a one-atom-at-a-time level. Usually, fusion–evaporation reactions are applied to reach these elements. However, access to the neutron-rich isotopes is limited. An alternative reaction mechanism to fusion–evaporation is multinucleon transfer, which features higher cross-sections. The main drawback of this technique is the wide angular distribution of the transfer products, which makes it challenging to catch and prepare them for precision measurements. To overcome this obstacle, we are building the NEXT experiment: a solenoid magnet is used to separate the different transfer products and to focus those of interest into a gas-catcher, where they are slowed down. From the gas-catcher, the ions are transferred and bunched by a stacked-ring ion guide into a multi-reflection time-of-flight mass spectrometer (MR-ToF MS). The MR-ToF MS provides isobaric separation and allows for precision mass measurements. In this article, we will give an overview of the NEXT experiment and its perspectives for future actinide research.
Main Authors
Format
Articles Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
MDPI AG
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202206223595Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
2218-2004
DOI
https://doi.org/10.3390/atoms10020059
Language
English
Published in
Atoms
Citation
  • Even, J., Chen, X., Soylu, A., Fischer, P., Karpov, A., Saiko, V., Saren, J., Schlaich, M., Schlathölter, T., Schweikhard, L., Uusitalo, J., & Wienholtz, F. (2022). The NEXT Project : Towards Production and Investigation of Neutron-Rich Heavy Nuclides. Atoms, 10(2), Article 59. https://doi.org/10.3390/atoms10020059
License
CC BY 4.0Open Access
Additional information about funding
This research was funded by the European Research Council Executive Agency (ERCEA), under the powers delegated by the European Commission through a starting grant number 803740-NEXT-ERC-2018-STG
Copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Share