Characterization of the photosensory module of a putative DNA binding phytochrome
Abstract
Fytokromit ovat punaista ja kaukopunaista valoa aistivia reseptori proteiineja, jotka säätelevät geenien luentaa ja muita solutason toimintoja kasveissa ja mikrobeissa. Fytokromit koostuvat proteiinidomeeneista, jotka voidaan jakaa N-terminaalin valoa aistivaan ja C-terminaalin signaloivaan moduuliin. Fytokromien toiminta perustuu niiden ainutlaatuiseen kykyyn palautettavasti muuttua stabiilista lepotilasta valolla aktivoitavaan aktiiviseen tilaan. Tässä tutkielmassa keskitymme fytokromiin, joka löydettiin bakteerista Bradyrhizobium sp. STM 3809. Tästä fytokromista puuttuu C-terminaalista bakteeriperäisille fytokromeille tyypillinen histidiinikinaasi ja sillä on sen sijaan DNA:ta sitova domeeni signaloivassa moduulissa, mikä tekee tästä fytokromista oivan kohteen optogenetiikan työkalu tutkimukseen. Tuotimme tämän fytokromin valoa aistivaa moduulia ja tutkimme sen ominaisuuksia ultravioletti-näkyvä spektroskopian ja analyyttisen geelisuodatuksen avulla. Saimme selville, että tällä fytokromilla on muihin tunnettuihin fytokromehin verrattuna punaiseen päin siirtynyt absorptiomaksimi 710 nm kohdalla. Lisäksi selvitimme, että valoa aistiva moduuli, BrCBD-PHY, on monomeerinen lepotilassa ja se palautuu nopeasti takaisin lepotilaan valoaktivoinnin jälkeen. Poikkeuksellisesti absorptiomaksimin siirtymistä kaukopunaiseen päin ei havaittu valaisun jälkeen, mutta biliverdiini kromoforin todettiin silti isomerisoituvan. Huolimatta tämän tutkielman lupaavista löydöksistä, jatkotutkimuksia tarvitaan kokopitkällä fytokromilla, jotta tämän fytokromin potentiaalia mahdollisen optogeneettisen työkalun kehittämisessä voidaan arvioida paremmin.
Phytochromes are red and far-red light sensing signaling proteins that take part in gene expression and other cellular processes in plants and micro-organisms. Phytochromes contain two main parts, the N-terminal photosensory module and the C-terminal output module that relays light detection to other parts of the organism. Key to phytochrome function is their unique ability to reversibly switch from a stable resting state to an active state upon photoactivation. In this project, we focused on a new putative DNA-binding phytochrome discovered in the bacterium Bradyrhizobium sp. STM 3809. Unlike typical bacteriophytochromes, this phytochrome lacks a histidine kinase domain in the output module, and instead has a DNA-binding domain as the output module, which makes this phytochrome a great target for optogenetic tool research. The photosensory module of this phytochrome was expressed and characterized using ultraviolet-visible spectroscopy and analytical size-exclusion chromatography. We discovered that this phytochrome has an absorption maximum of 710 nm in the resting state, which is red shifted compared to other known phytochromes. Additionally, we learned that the photosensory module, BrCBD-PHY, is a monomer in the resting state with a fast dark reversion from the active state back to the resting state. No red shift takes place in the absorption maximum upon illumination, but the biliverdin chromophore was confirmed to undergo Z/E isomerization. Despite our promising findings in this project, further studies with the full length phytochrome are needed to assess the full potential of this phytochrome in optogenetic tool development.
Phytochromes are red and far-red light sensing signaling proteins that take part in gene expression and other cellular processes in plants and micro-organisms. Phytochromes contain two main parts, the N-terminal photosensory module and the C-terminal output module that relays light detection to other parts of the organism. Key to phytochrome function is their unique ability to reversibly switch from a stable resting state to an active state upon photoactivation. In this project, we focused on a new putative DNA-binding phytochrome discovered in the bacterium Bradyrhizobium sp. STM 3809. Unlike typical bacteriophytochromes, this phytochrome lacks a histidine kinase domain in the output module, and instead has a DNA-binding domain as the output module, which makes this phytochrome a great target for optogenetic tool research. The photosensory module of this phytochrome was expressed and characterized using ultraviolet-visible spectroscopy and analytical size-exclusion chromatography. We discovered that this phytochrome has an absorption maximum of 710 nm in the resting state, which is red shifted compared to other known phytochromes. Additionally, we learned that the photosensory module, BrCBD-PHY, is a monomer in the resting state with a fast dark reversion from the active state back to the resting state. No red shift takes place in the absorption maximum upon illumination, but the biliverdin chromophore was confirmed to undergo Z/E isomerization. Despite our promising findings in this project, further studies with the full length phytochrome are needed to assess the full potential of this phytochrome in optogenetic tool development.
Main Author
Format
Theses
Master thesis
Published
2022
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202206223577Use this for linking
Language
English
The record contains restricted files. You can request a copy of this thesis here.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
Tekijä ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyväskylän yliopiston kirjaston arkistotyösemalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..