Polkuattribuutti-menetelmä harvinaisten prosessivarianttien anonymisointiin
Päivämäärä
2022Tutkielmassa selvitetään Suomen ja Euroopan Unionin lainsäädäntöä anonymisoinnin suhteen sekä yleisimpiä anonymisoinnin menetelmien toimintatapaa. Esitämme polkuattribuutti-menetelmän, jolla anonymisointi voidaan kohdentaa ainoastaan hoitopolun yksilöiviin osiin sen sijaan, että koko tapahtumarivi tai hoitopolku sensuroitaisiin osana anonymisointia. Menetelmän toimivuutta selvitetään kokeellisesti generoidulla datalla ja havaitaan, että polkuattribuutti-menetelmällä anonymisointu data korreloi hyvin vahvasti alkuperäisen aineiston kanssa. In the study we explore the legal requirements for anonymization in Finland and the European union. We also cover the mathematical basis and function of the most popular anonymization methods. We present a path attribute -method for anonymization where one can pinpoint anonymization to identifying nodes of the care pathway instead of censoring the entire event or the entire care pathway as a part of the anonymization process. We experiment with the validity of the method with generated data and we find that the data anonymized using the path attribute -method correlates strongly with the original data.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Bayesian semiparametric long memory models for discretized event data
Chakraborty, Antik; Ovaskainen, Otso; Dunson, David B. (Institute of Mathematical Statistics, 2022)We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of ... -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ... -
Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo
Vihola, Matti (John Wiley & Sons, 2020)Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a ... -
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ... -
Probabilistic Selection Approaches in Decomposition-based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization
Mazumdar, Atanu; Chugh, Tinkle; Hakanen, Jussi; Miettinen, Kaisa (IEEE, 2022)In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.