Show simple item record

dc.contributor.authorBautista, George J.
dc.contributor.authorPotenciano-Machado, Leyter
dc.date.accessioned2022-05-04T09:19:39Z
dc.date.available2022-05-04T09:19:39Z
dc.date.issued2022
dc.identifier.citationBautista, G. J., & Potenciano-Machado, L. (2022). Norm-inflation results for purely BBM-type Boussinesq systems. <i>Journal of Mathematical Analysis and Applications</i>, <i>514</i>(1), Article 126254. <a href="https://doi.org/10.1016/j.jmaa.2022.126254" target="_blank">https://doi.org/10.1016/j.jmaa.2022.126254</a>
dc.identifier.otherCONVID_118996813
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80878
dc.description.abstractThis article is concerned with the norm-inflation phenomena associated with a periodic initial-value abcd-Benjamin-Bona-Mahony type Boussinesq system. We show that the initial-value problem is ill-posed in the periodic Sobolev spaces H−sp (0, 2π)×H−sp (0, 2π) for all s > 0. Our proof is constructive, in the sense that we provide smooth initial data that generates solutions arbitrarily large in H−sp (0, 2π) × H−sp (0, 2π)-norm for arbitrarily short time. This result is sharp since in [15] the well-posedness is proved to holding for all positive periodic Sobolev indexes of the form Hsp (0, 2π) × Hsp (0, 2π), including s = 0.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applications
dc.rightsCC BY 4.0
dc.subject.otherBoussinesq system
dc.subject.otherBenjamin-Bona Mahony equation
dc.subject.otherspectral analysis
dc.subject.otherFourier series
dc.subject.othernorm inflation
dc.subject.otherPicard's iteration
dc.subject.otherDuhamel's principle
dc.titleNorm-inflation results for purely BBM-type Boussinesq systems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202205042540
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0022-247X
dc.relation.numberinseries1
dc.relation.volume514
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoFourier'n sarjat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8723
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.jmaa.2022.126254
jyx.fundinginformationG. J. B was partially supported by the Universidad Privada del Norte, Lima-Perú. L. P-M thanks the Department of Mathematics and Statistics of the University of Jyväskylä, Finland, for providing an excellent environment to prepare this manuscript.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0