Show simple item record

dc.contributor.authorKuisma, Mikael
dc.contributor.authorRousseaux, Benjamin
dc.contributor.authorCzajkowski, Krzysztof M.
dc.contributor.authorRossi, Tuomas P.
dc.contributor.authorShegai, Timur
dc.contributor.authorErhart, Paul
dc.contributor.authorAntosiewicz, Tomasz J.
dc.date.accessioned2022-03-16T11:54:07Z
dc.date.available2022-03-16T11:54:07Z
dc.date.issued2022
dc.identifier.citationKuisma, M., Rousseaux, B., Czajkowski, K. M., Rossi, T. P., Shegai, T., Erhart, P., & Antosiewicz, T. J. (2022). Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study. <i>ACS Photonics</i>, <i>9</i>(3), 1065-1077. <a href="https://doi.org/10.1021/acsphotonics.2c00066" target="_blank">https://doi.org/10.1021/acsphotonics.2c00066</a>
dc.identifier.otherCONVID_104496373
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80178
dc.description.abstractUltrastrong coupling (USC) is a distinct regime of light-matter interaction in which the coupling strength is comparable to the resonance energy of the cavity or emitter. In the USC regime, common approximations to quantum optical Hamiltonians, such as the rotating wave approximation, break down as the ground state of the coupled system gains photonic character due to admixing of vacuum states with higher excited states, leading to ground-state energy changes. USC is usually achieved by collective coherent coupling of many quantum emitters to a single mode cavity, whereas USC with a single molecule remains challenging. Here, we show by time-dependent density functional theory (TDDFT) calculations that a single organic molecule can reach USC with a plasmonic dimer, consisting of a few hundred atoms. In this context, we discuss the capacity of TDDFT to represent strong coupling and its connection to the quantum optical Hamiltonian. We find that USC leads to appreciable ground-state energy modifications accounting for a non-negligible part of the total interaction energy, comparable to kBT at room temperature.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Photonics
dc.relation.urihttp://dx.doi.org/10.1021/acsphotonics.2c00066
dc.rightsCC BY 4.0
dc.subject.otherstrong coupling
dc.subject.othertime-dependent density functional theory
dc.subject.otherplasmonics
dc.subject.othernanophotonics
dc.subject.otherexcitons
dc.titleUltrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202203161879
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1065-1077
dc.relation.issn2330-4022
dc.relation.numberinseries3
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysofotoniikka
dc.subject.ysoplasmoniikka
dc.subject.ysonanorakenteet
dc.subject.ysotiheysfunktionaaliteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38037
jyx.subject.urihttp://www.yso.fi/onto/yso/p39030
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsphotonics.2c00066
jyx.fundinginformationWe acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0