Näytä suppeat kuvailutiedot

dc.contributor.authorAbramovich, Sergei
dc.contributor.authorKuznetsov, Nikolay V.
dc.contributor.authorLeonov, Gennady A.
dc.date.accessioned2022-03-03T08:31:06Z
dc.date.available2022-03-03T08:31:06Z
dc.date.issued2022
dc.identifier.citationAbramovich, S., Kuznetsov, N. V., & Leonov, G. A. (2022). Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research. <i>Axioms</i>, <i>11</i>(2), Article 48. <a href="https://doi.org/10.3390/axioms11020048" target="_blank">https://doi.org/10.3390/axioms11020048</a>
dc.identifier.otherCONVID_104473929
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80058
dc.description.abstractFibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits of a second-order two-parametric difference equation, are considered. Using Maple and Wolfram Alpha, the location of the largest and the smallest roots responsible for the cycles of period p among the roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been determined. These purely computational results of experimental mathematics, made possible by the use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed methods of formal mathematics.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesAxioms
dc.rightsCC BY 4.0
dc.subject.otherFibonacci-like polynomials
dc.subject.othergeneralized golden ratios
dc.subject.othercycles
dc.subject.othercomputational experiments
dc.subject.otherMaple
dc.subject.otherWolfram Alpha
dc.titleComputational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202203031773
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2075-1680
dc.relation.numberinseries2
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysopolynomit
dc.subject.ysoFibonaccin lukujono
dc.subject.ysonumeeriset menetelmät
dc.subject.ysokultainen leikkaus
dc.subject.ysoMaple
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17241
jyx.subject.urihttp://www.yso.fi/onto/yso/p28107
jyx.subject.urihttp://www.yso.fi/onto/yso/p6588
jyx.subject.urihttp://www.yso.fi/onto/yso/p21543
jyx.subject.urihttp://www.yso.fi/onto/yso/p4496
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/axioms11020048
jyx.fundinginformationThe research received no external funding.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0