dc.contributor.author | Abramovich, Sergei | |
dc.contributor.author | Kuznetsov, Nikolay V. | |
dc.contributor.author | Leonov, Gennady A. | |
dc.date.accessioned | 2022-03-03T08:31:06Z | |
dc.date.available | 2022-03-03T08:31:06Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Abramovich, S., Kuznetsov, N. V., & Leonov, G. A. (2022). Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research. <i>Axioms</i>, <i>11</i>(2), Article 48. <a href="https://doi.org/10.3390/axioms11020048" target="_blank">https://doi.org/10.3390/axioms11020048</a> | |
dc.identifier.other | CONVID_104473929 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/80058 | |
dc.description.abstract | Fibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits of a second-order two-parametric difference equation, are considered. Using Maple and Wolfram Alpha, the location of the largest and the smallest roots responsible for the cycles of period p among the roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been determined. These purely computational results of experimental mathematics, made possible by the use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed methods of formal mathematics. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.relation.ispartofseries | Axioms | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Fibonacci-like polynomials | |
dc.subject.other | generalized golden ratios | |
dc.subject.other | cycles | |
dc.subject.other | computational experiments | |
dc.subject.other | Maple | |
dc.subject.other | Wolfram Alpha | |
dc.title | Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202203031773 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Computational Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2075-1680 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 11 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | polynomit | |
dc.subject.yso | Fibonaccin lukujono | |
dc.subject.yso | numeeriset menetelmät | |
dc.subject.yso | kultainen leikkaus | |
dc.subject.yso | Maple | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17241 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28107 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6588 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21543 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4496 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.3390/axioms11020048 | |
jyx.fundinginformation | The research received no external funding. | |
dc.type.okm | A1 | |