Rigidity, counting and equidistribution of quaternionic Cartan chains
Abstract
In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.
Main Authors
Format
Articles
Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
Universite Clermont Auvergne
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202201261298Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1259-1734
DOI
https://doi.org/10.5802/ambp.399
Language
English
Published in
Annales Mathematiques Blaise Pascal
Citation
- Parkkonen, J., & Paulin, F. (2022). Rigidity, counting and equidistribution of quaternionic Cartan chains. Annales Mathematiques Blaise Pascal, 28(1), 45-69. https://doi.org/10.5802/ambp.399
Copyright© 2022 the Authors