Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization

Abstract
Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different groups of participants are expected to have common or highly correlated brain activities and some individual dynamics. In this study, we proposed a data-driven shared and unshared feature extraction framework based on nonnegative and coupled tensor factorization, which aims to conduct group-level analysis for the EEG signals from major depression disorder (MDD) patients and healthy controls (HC) when freely listening to music. Constrained tensor factorization not only preserves the multilinear structure of the data, but also considers the common and individual components between the data. The proposed framework, combined with music information retrieval, correlation analysis, and hierarchical clustering, facilitated the simultaneous extraction of shared and unshared spatio-temporal-spectral feature patterns between/in MDD and HC groups. Finally, we obtained two shared feature patterns between MDD and HC groups, and obtained totally three individual feature patterns from HC and MDD groups. The results showed that the MDD and HC groups triggered similar brain dynamics when listening to music, but at the same time, MDD patients also brought some changes in brain oscillatory network characteristics along with music perception. These changes may provide some basis for the clinical diagnosis and the treatment of MDD patients.
Main Authors
Format
Articles Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
Frontiers Media SA
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202201261279Use this for linking
Review status
Peer reviewed
ISSN
1662-5161
DOI
https://doi.org/10.3389/fnhum.2021.799288
Language
English
Published in
Frontiers in Human Neuroscience
Citation
  • Wang, X., Liu, W., Wang, X., Mu, Z., Xu, J., Chang, Y., Zhang, Q., Wu, J., & Cong, F. (2021). Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization. Frontiers in Human Neuroscience, 15, Article 799288. https://doi.org/10.3389/fnhum.2021.799288
License
CC BY 4.0Open Access
Additional information about funding
This work is supported by National Natural Science Foundation of China (grant no. 91748105), National Foundation in China (no. JCKY2019110B009 and 2020-JCJQ-JJ-252), the Fundamental Research Funds for the Central Universities (DUT2019 and DUT20LAB303) in Dalian University of Technology in China, Dalian Science and Technology Innovation Fund Project (2021JJ12SN38), and the scholarship from China scholarship Council (no. 201706060263).
Copyright© 2021 Wang, Liu, Wang, Mu, Xu, Chang, Zhang, Wu and Cong

Share