Show simple item record

dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2022-01-18T13:43:40Z
dc.date.available2022-01-18T13:43:40Z
dc.date.issued2022
dc.identifier.citationOrponen, T. (2022). On arithmetic sums of Ahlfors-regular sets. <i>Geometric and Functional Analysis</i>, <i>32</i>(1), 81-134. <a href="https://doi.org/10.1007/s00039-021-00589-x" target="_blank">https://doi.org/10.1007/s00039-021-00589-x</a>
dc.identifier.otherCONVID_103881631
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79405
dc.description.abstractLet A,B⊂RA,B⊂R be closed Ahlfors-regular sets with dimensions dimHA=:αdimH⁡A=:α and dimHB=:βdimH⁡B=:β. I prove that dimH[A+θB]≥α+β⋅1−α2−αdimH⁡[A+θB]≥α+β⋅1−α2−α for all θ∈R∖Eθ∈R∖E, where dimHE=0dimH⁡E=0.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBirkhäuser
dc.relation.ispartofseriesGeometric and Functional Analysis
dc.rightsCC BY 4.0
dc.subject.otherAhlfors-regular sets
dc.subject.othersum-product problem
dc.subject.otherHausdorff dimension
dc.titleOn arithmetic sums of Ahlfors-regular sets
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202201181174
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange81-134
dc.relation.issn1016-443X
dc.relation.numberinseries1
dc.relation.volume32
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoaritmetiikka
dc.subject.ysomittateoria
dc.subject.ysokombinatoriikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3159
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p4745
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00039-021-00589-x
jyx.fundinginformationT.O. is supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896. T.O. is also supported by the University of Helsinki via the project Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups, project No. 7516125.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0