Reducing the Irreducible : Dispersed Metal Atoms Facilitate Reduction of Irreducible Oxides
Korpelin, V., Melander, M. M., & Honkala, K. (2022). Reducing the Irreducible : Dispersed Metal Atoms Facilitate Reduction of Irreducible Oxides. Journal of Physical Chemistry C, 126(2), 933-945. https://doi.org/10.1021/acs.jpcc.1c08979
Published in
Journal of Physical Chemistry CDate
2022Discipline
Nanoscience CenterFysikaalinen kemiaResurssiviisausyhteisöNanoscience CenterPhysical ChemistrySchool of Resource WisdomCopyright
© 2022 the Authors
Oxide reducibility is a central concept quantifying the role of the support in catalysis. While reducible oxides are often considered catalytically active, irreducible oxides are seen as inert supports. Enhancing the reducibility of irreducible oxides has, however, emerged as an effective way to increase their catalytic activity while retaining their inherent thermal stability. In this work, we focus on the prospect of using single metal atoms to increase the reducibility of a prototypical irreducible oxide, zirconia. Based on extensive self-consistent DFT+U calculations, we demonstrate that single metal atoms significantly improve and tune the surface reducibility of zirconia. Detailed analysis of the observed single atom induced reducibility allows us to attribute the enhanced reducibility to strong interactions between the metal atom and the electrons trapped in the vacancy and d–p orbital interactions between the metal atom and oxygen. This analysis enables transferring the obtained theoretical understanding to other irreducible oxides as well. The detailed understanding of how oxide reducibility can be tuned offers precise control over the catalytic properties of metal oxides.
...
Publisher
American Chemical Society (ACS)ISSN Search the Publication Forum
1932-7447Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/103812982
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoF; Postdoctoral Researcher, AoFAdditional information about funding
The work was supported by the Academy of Finland through Projects 277222 (V.K. and K.H.), 307853 (M.M.M.), and 317739 (M.M.M. and K.H.).License
Related items
Showing items with similar title or keywords.
-
DFT Prediction of Enhanced Reducibility of Monoclinic Zirconia upon Rhodium Deposition
Bazhenov, Andrey; Kauppinen, Minttu; Honkala, Karoliina (American Chemical Society, 2018)Oxides are an important class of materials and are widely used, for example, as supports in heterogeneous catalysis. In a number of industrial catalytic processes, oxide supports actively participate in chemical transformations ... -
Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)
Kumeda, Tomoaki; Laverdure, Laura; Honkala, Karoliina; Melander, Marko M.; Sakaushi, Ken (Wiley-VCH Verlag, 2023)The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ... -
Computational studies of chemical looping combustion materials and CO₂ activating surfaces
Parviainen, Teemu (University of Jyväskylä, 2016) -
Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
Wu, Tongwei; Melander, Marko M.; Honkala, Karoliina (American Chemical Society (ACS), 2022)Electrochemical N2 reduction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER), but atomic-scale factors controlling HER/NRR competition are unknown. Herein we unveil the mechanism, ... -
Synthesis of Polycyclic Indolines utilizing a reduction/cyclization cascade reaction
Zhang, Jingyu; Xia, Wei; Qu, Meilin; Huda, Saskia; Ward, Jas; Rissanen, Kari; Albrecht, Markus (Wiley-VCH Verlag, 2021)Subsequent reduction and dearomatizing cyclization reactions open up an entry into the synthesis of novel N-fused polycyclic indolines. The dearomatizing cyclization as key step of the sequence proceeds well with Cu(OTf)2 ...