Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Dan-Qing
dc.contributor.authorKang, Minkyung
dc.contributor.authorPerry, David
dc.contributor.authorChen, Chang-Hui
dc.contributor.authorWest, Geoff
dc.contributor.authorXia, Xue
dc.contributor.authorChaudhuri, Shayantan
dc.contributor.authorLaker, Zachary P. L.
dc.contributor.authorWilson, Neil R.
dc.contributor.authorMeloni, Gabriel N.
dc.contributor.authorMelander, Marko M.
dc.contributor.authorMaurer, Reinhard J.
dc.contributor.authorUnwin, Patrick R.
dc.date.accessioned2022-01-11T09:41:49Z
dc.date.available2022-01-11T09:41:49Z
dc.date.issued2021
dc.identifier.citationLiu, D.-Q., Kang, M., Perry, D., Chen, C.-H., West, G., Xia, X., Chaudhuri, S., Laker, Z. P. L., Wilson, N. R., Meloni, G. N., Melander, M. M., Maurer, R. J., & Unwin, P. R. (2021). Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. <i>Nature Communications</i>, <i>12</i>, Article 7110. <a href="https://doi.org/10.1038/s41467-021-27339-9" target="_blank">https://doi.org/10.1038/s41467-021-27339-9</a>
dc.identifier.otherCONVID_103618298
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79286
dc.description.abstract2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesNature Communications
dc.rightsCC BY 4.0
dc.titleAdiabatic versus non-adiabatic electron transfer at 2D electrode materials
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202201111064
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2041-1723
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307853
dc.relation.grantnumber317739
dc.subject.ysoelektrodit
dc.subject.ysografeeni
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysosähkökemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14077
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41467-021-27339-9
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationD-Q.L. thanks the China Scholarship Council-University of Warwick joint scholarship programme. S.C. acknowledges funding by the EPSRC Centre for Doctoral Training in Diamond Science and Technology (EP/L015315/1). R.J.M. acknowledges funding via a UKRI Future Leaders Fellowship (MR/S016023/1) and computing resources provided by the Scientific Computing Research Technology Platform of the University of Warwick, the EPSRC-funded HPC Midlands Plus Centre for high-performance computing (EP/P020232/1) and the ARCHER2 UK National Supercomputing Service (https://www.archer2.ac.uk) via the EPSRC-funded High End Computing Materials Chemistry Consortium (EP/R029431/1). M.M.M. acknowledges funding by the Academy of Finland (projects 307853 and 317739) and the computational resources provided by CSC—IT Center for Science, Espoo, Finland (https://www.csc.fi/en/). P.R.U. thanks the Royal Society for a Wolfson Research Merit Award. M.K. acknowledges support from the Leverhulme Trust for an Early Career Fellowship.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0