Näytä suppeat kuvailutiedot

dc.contributor.authorSamanta, Sumanta
dc.contributor.authorYlä-Outinen, Laura
dc.contributor.authorRangasami, Vignesh Kumar
dc.contributor.authorNarkilahti, Susanna
dc.contributor.authorOommen, Oommen P.
dc.date.accessioned2021-12-23T08:16:58Z
dc.date.available2021-12-23T08:16:58Z
dc.date.issued2022
dc.identifier.citationSamanta, S., Ylä-Outinen, L., Rangasami, V. K., Narkilahti, S., & Oommen, O. P. (2022). Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold. <i>Acta Biomaterialia</i>, <i>140</i>, 314-323. <a href="https://doi.org/10.1016/j.actbio.2021.12.010" target="_blank">https://doi.org/10.1016/j.actbio.2021.12.010</a>
dc.identifier.otherCONVID_103455550
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79174
dc.description.abstractHuman pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesActa Biomaterialia
dc.rightsCC BY 4.0
dc.subject.otherneuronal network
dc.subject.otherhuman pluripotent stem cells
dc.subject.otherhyaluronic acid
dc.subject.otherchondroitin sulfate
dc.subject.otherdopamine
dc.subject.otherbrain-mimetic hydrogel scaffold
dc.titleBidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202112236156
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange314-323
dc.relation.issn1742-7061
dc.relation.volume140
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber301824
dc.subject.ysodopamiini
dc.subject.ysohermoverkot (biologia)
dc.subject.ysohyaluronaani
dc.subject.ysobiomimeettiset materiaalit
dc.subject.ysohermosolut
dc.subject.ysoindusoidut monikykyiset kantasolut
dc.subject.ysokudosviljely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14737
jyx.subject.urihttp://www.yso.fi/onto/yso/p38811
jyx.subject.urihttp://www.yso.fi/onto/yso/p24038
jyx.subject.urihttp://www.yso.fi/onto/yso/p21021
jyx.subject.urihttp://www.yso.fi/onto/yso/p18309
jyx.subject.urihttp://www.yso.fi/onto/yso/p38716
jyx.subject.urihttp://www.yso.fi/onto/yso/p18040
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.actbio.2021.12.010
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe work was supported by the Imaging Facility and iPS Cells Facility (Faculty of Medicine and Health Technology, Tampere University). The authors also thank Biocenter Finland for the support of Imaging and iPS cell facilities. This work was supported by the Academy of Finland (grant number 336665 to SN; grant numbers 286990, 326436, and 301824 to LY), the European Union's Horizon 2020 Marie Sklodowska-Curie Grant Program (Agreement No. 713645 to SS).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0