Rutenium-98 isotoopin tarkkuusmassamittaus JYFLTRAP Penningin loukulla
Abstract
Rutenium-98 isotoopin atomimassa on huonoiten tunnettu kaikista stabiileista isotoopeista. Sen ajankohtaisin taulukkoarvo perustuu 1960- ja 1970-luvuilla suoritettuihin
mittauksiin, minkä seurauksena massaylijäämän arvo, (-88225 ± 6) keV, on jäänyt
epätarkaksi. Rutenium-98 on niin kutsuttu p-isotooppi, jota tuotetaan astrofysikaalisen γ-prosessin kautta esimerkiksi supernovaräjähdyksissä. Kuten p-isotoopit yleensä,
myös rutenium-98 on harvinainen isotooppi. Sen pitoisuus luonnon ruteniumista on
vain 1,87%. Tässä pro gradu -tutkielmassa rutenium-98:n atomimassan tarkkuutta
parannetaan mittaamalla se JYFLTRAP Penningin loukulla.
Molybdeeni-98 (protoniluku Z=42) voi hajota kaksoisbeetahajoamisella Ru-98:ksi
(Z=44). Molybdeeni-98 isotoopin massaylijäämä (-88115,98 ± 0,17) keV on jo hyvin
tarkasti tunnettu. Tämän reaktion parempaan mallintamiseen tarvitaan tarkkaa
Q-arvoa, joka voidaan määrittää JYFLTRAP Penningin loukulla erittäin tarkasti.
Tässä työssä molybdeeni-98:aa hyödynnettiin myös referenssi-ionina.
Lopputuloksena rutenium-98:n massaylijäämälle saatiin arvo (-88229,8 ± 0,3) keV
ja atomimassaksi (97,9052814 ± 0,0000003) u, mikä sopii aiempiin mittaustuloksiin,
mutta on huomattavan paljon tarkempi. Lisäksi laskin tätä tulosta hyödyntämällä
uudet tarkemmat Q-arvot erilaisille Ru-98 isotooppiin liittyville reaktioille.
The atomic mass of the ruthenium-98 isotope is the least known of all stable isotopes. Its current literary value is based on measurements done in 1960s and 1970s, and its mass-excess value, (-88225 ± 6) keV, has a very high uncertainty. It is a socalled p-isotope and is produced through the astrophysical γ-process in for example, supernova explosions. Its share of natural ruthenium is just 1.87%. In this master’s thesis the atomic mass of ruthenium-98 is measured more accurately using the JYFLTRAP Penning trap. Molybdenium-98 (proton number Z=42) can double-beta decay into Ru-98 (Z=44). Its mass excess (-88115.98 ± 0.17) keV is already known very accurately. To model the double beta-decay better its Q-value has to be known precisely. This can be determined very accurately with the JYFLTRAP Penning trap. In this work, molybdenium-98 was also utilized as a reference ion. As a result, the mass excess of (-88229.8 ± 0.3) keV was achieved for Ru-98, which is equal to total mass of (97.9052814 ± 0.0000003) u. This result is in agreement with previous measurements, but is a lot more accurate. In addition, I calculated new more accurate Q-values for different reactions that involve Ru-98 using these results.
The atomic mass of the ruthenium-98 isotope is the least known of all stable isotopes. Its current literary value is based on measurements done in 1960s and 1970s, and its mass-excess value, (-88225 ± 6) keV, has a very high uncertainty. It is a socalled p-isotope and is produced through the astrophysical γ-process in for example, supernova explosions. Its share of natural ruthenium is just 1.87%. In this master’s thesis the atomic mass of ruthenium-98 is measured more accurately using the JYFLTRAP Penning trap. Molybdenium-98 (proton number Z=42) can double-beta decay into Ru-98 (Z=44). Its mass excess (-88115.98 ± 0.17) keV is already known very accurately. To model the double beta-decay better its Q-value has to be known precisely. This can be determined very accurately with the JYFLTRAP Penning trap. In this work, molybdenium-98 was also utilized as a reference ion. As a result, the mass excess of (-88229.8 ± 0.3) keV was achieved for Ru-98, which is equal to total mass of (97.9052814 ± 0.0000003) u. This result is in agreement with previous measurements, but is a lot more accurate. In addition, I calculated new more accurate Q-values for different reactions that involve Ru-98 using these results.
Main Author
Format
Theses
Master thesis
Published
2021
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202112216078Use this for linking
Language
Finnish