University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Existence of weak solutions of mean-field stochastic differential equations

Thumbnail
View/Open
372.4 Kb

Downloads:  
Show download detailsHide download details  
Authors
Koivu, Jesse
Date
2021
Discipline
Stokastiikka ja todennäköisyysteoriaStochastics and Probability
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tässä tutkielmassa käsittelemme odotusarvokentällisiä stokastisia differentiaaliyhtälöitä, mitkä ovat yleistys klassisille stokastisille differentiaaliyhtälöille. Odotusarvokentällisen stokastisen differentiaaliyhtälön kerroinfunktiot saattavat riippua ylimääräisestä mittakomponentista ratkaisun jakauman muodossa. Käsittelemme heikkojen ratkaisujen olemassaoloa tällaisille yhtälöille olettaen, että kerroinfunktiot ovat rajoitettuja ja jatkuvia, missä jatkuvuus mittakomponentin suhteen ymmärretään jatkuvuutena 2-Wasserstein metriikan suhteen. Seuraamme artikkelia Li, J. ja Min, H. Weak solutions of mean-field stochastic differential equations (2017). Aloitamme palauttamalla mieliimme joitakin keskeisiä käsitteitä stokastisesta analyysistä. Tämän jälkeen esittelemme polkuavaruuden, klassisen lokaalin martingaaliongelman ja funktionaaliset stokastiset differentiaaliyhtälöt. Lisäksi esittelemme Wassersteinin mittojen avaruudet ja funktioiden differentioituvuuden mittakomponentin suhteen. Lopuksi osoitamme heikkojen ratkaisujen olemassaolon odotusarvokentällisille stokastisille differentiaaliyhtälöille olettaen, että kerroinfunktiot ovat rajoitettuja, mitallisia ja jatkuvia. Tämä tehdään näyttämällä, että vastaavalla lokaalilla martingaaliongelmalla on olemassa ratkaisu. ...
 
In this thesis we consider mean-field stochastic differential equations, which are an extension of classical stochastic differential equations, where the coefficients may depend on an additional measure component in the law of the solution. We consider the existence of weak solutions of such equations under the assumption that the coefficients are bounded and continuous, where the continuity is understood in the 2-Wasserstein metric in the measure component. We follow the treatment given in the article of Li, J. and Min, H., Weak solutions of mean-field stochastic differential equations (2017). We start by recalling some fundamental notions from stochastic analysis. Then we introduce the path space, along with the classical local martingale problem and functional stochastic differential equations. Furthermore we introduce the Wasserstein spaces of measures and how to differentiate functions depending on a measure variable. Finally we show the existence of weak solutions to mean-field stochastic differential equations under bounded, measurable and continuous coefficients by showing that there exists a solution to the corresponding local martingale problem. ...
 
Keywords
stochastics stochastic differential equations mean-field differentiaaliyhtälöt matematiikka differential equations mathematics
URI

http://urn.fi/URN:NBN:fi:jyu-202112095908

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24542]

Related items

Showing items with similar title or keywords.

  • Decoupling on the Wiener space and variational estimates for BSDEs 

    Ylinen, Juha (University of Jyväskylä, 2015)
  • Mean square rate of convergence for random walk approximation of forward-backward SDEs 

    Geiss, Christel; Labart, Céline; Luoto, Antti (Cambridge University Press (CUP), 2020)
    Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of ...
  • Donsker-type theorem for BSDEs : Rate of convergence 

    Briand, Philippe; Geiss, Christel; Geiss, Stefan; Labart, Céline (International Statistical Institute, 2021)
    In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, ...
  • Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting 

    Geiss, Christel; Steinicke, Alexander (Shandong Daxue, 2018)
    We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified ...
  • Unbiased Estimators and Multilevel Monte Carlo 

    Vihola, Matti (Institute for Operations Research and the Management Sciences, 2018)
    Multilevel Monte Carlo (MLMC) and recently proposed unbiased estimators are closely related. This connection is elaborated by presenting a new general class of unbiased estimators, which admits previous debiasing schemes ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre