dc.contributor.author | Rajala, Kai | |
dc.contributor.author | Rasimus, Martti | |
dc.contributor.author | Romney, Matthew | |
dc.date.accessioned | 2021-11-26T07:16:33Z | |
dc.date.available | 2021-11-26T07:16:33Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Rajala, K., Rasimus, M., & Romney, M. (2021). Uniformization with Infinitesimally Metric Measures. <i>Journal of Geometric Analysis</i>, <i>31</i>(11), 11445-11470. <a href="https://doi.org/10.1007/s12220-021-00689-y" target="_blank">https://doi.org/10.1007/s12220-021-00689-y</a> | |
dc.identifier.other | CONVID_89720384 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78803 | |
dc.description.abstract | We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, whose definition involves deforming lengths of curves by μμ. We show that if μμ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a μμ-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Geometric Analysis | |
dc.rights | CC BY 4.0 | |
dc.subject.other | metric doubling measure | |
dc.subject.other | quasiconformal mapping | |
dc.subject.other | quasisymmetric mapping | |
dc.subject.other | conformal modulus | |
dc.title | Uniformization with Infinitesimally Metric Measures | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202111265810 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 11445-11470 | |
dc.relation.issn | 1050-6926 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 31 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | mittateoria | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s12220-021-00689-y | |
jyx.fundinginformation | Open access funding provided by University of Jyväskylä (JYU). | |
dc.type.okm | A1 | |