Folders: 49 Files: 104
Bytes: 298454801
1_position_of_samples_on_plates_images.pdf
2_biomass_electronic_cell_counter.xlsx
Data-descriptor-for-article.pdf
training_and_valid_data.npy
training_and_valid_metadata.npy
biomass_mixtures.npy
mixtures_absorbances.npy
test_mono_1DCNN.npy
test_mono_biom_1DCNN.npy
IQ_1D_CNN_Test_data.ipynb
IQ_1D_CNN_Training_and_valid_Data.ipynb
SpecimIQ_2019_11_27-notfiltered-means.ipynb
SpecimIQ_2019_11_29-notfiltered-means.ipynb
SpecimIQ_2019_12_03-notfiltered-means.ipynb
SpecimIQ_2019_12_05-notfiltered-means.ipynb
SpecimIQ_2019_12_09-notfiltered-mean.ipynb
SpecimIQ_2019_12_11-notfiltered-means.ipynb
SpecimIQ_2019_12_16-notfiltered-means.ipynb
SpecimIQ_2019_12_17-notfiltered-means.ipynb
SpecimIQ_2019_12_18-notfiltered-means.ipynb
IQ_CCAC_browngreen.ipynb
IQ_CCAC_cyanobacteria.ipynb
IQ_Sallis_thesis_exp_2020_05_31.ipynb
IQ_Sallis_thesis_exp_2020_06_01.ipynb
IQ_Sallis_thesis_exp_2020_06_02.ipynb
IQ_Sallis_thesis_exp_2020_06_03.ipynb
IQ_Sallis_thesis_exp_2020_06_07.ipynb
IQ_Sallis_thesis_exp_2021_05_25.ipynb
IQ_Sallis_thesis_exp_2021_05_31.ipynb
IQ_Sallis_thesis_exp_2021_06_01.ipynb
IQ_Sallis_thesis_exp_2021_06_02.ipynb
IQ_Sallis_thesis_exp_2021_06_03.ipynb
CNN_1_-Copy1.ipynb
CNN_2_-Copy1.ipynb
CNN_3_-Copy1.ipynb
CNN_4_-Copy1.ipynb
CNN_5_-Copy1.ipynb
CNN_6_-Copy1.ipynb
CNN_7_-Copy1.ipynb
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
CNN_2_-Copy1.ipynb
CNN_4_-Copy1.ipynb
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
saved_model.pb
variables.data-00000-of-00001
variables.index
Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network
Abstract
Artikkeliin "Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network" liittyvä aineisto koostuu seuraavista osista:
1.Transmittanssi-hyperspektrikuvat levänäytteistä kuvattuina 24-kuoppalevyllä
2.Biomassamääritykset elektronisella solulaskurilla
3.Opetus- ja validointiaineisto konvoluutioneuroverkolle
4.Testiaineisto konvoluutioneuroverkolle
5.Opetus-, validointi- ja testiaineiston käsittelyyn käytetty Python koodi
6.Seitsemään eri malliin käytetty Python koodi ja mallit itsessään
Main Authors
Format
Dataset
Published
2021
Subjects
Publication in research information system
Publisher
University of Jyväskylä
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202111085543Käytä tätä linkitykseen.
DOI
https://doi.org/10.17011/jyx/dataset/78519
Language
English
Citation
- Salmi, Pauliina; Calderini, Marco; Taipale, Sami; Pölönen, Ilkka; Pääkkönen, Salli (2021). Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network. V. 2.9.2021. 10.17011/jyx/dataset/78519
Funding program(s)
Tutkijatohtori, SA
Postdoctoral Researcher, AoF
CopyrightSalmi, Pauliina