Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (v3.06h) : a new version of the program
Abstract
We describe the new version (v3.06h) of the code HFODD that solves the universal nonrelativistic nuclear DFT Hartree–Fock or Hartree–Fock–Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we implemented the following new features: (i) zero-range three- and four-body central terms, (ii) zero-range three-body gradient terms, (iii) zero-range tensor terms, (iv) zero-range isospin-breaking terms, (v) finite-range higher-order regularized terms, (vi) finite-range separable terms, (vii) zero-range two-body pairing terms, (viii) multi-quasiparticle blocking, (ix) Pfaffian overlaps, (x) particle-number and parity symmetry restoration, (xi) axialization, (xii) Wigner functions, (xiii) choice of the harmonic-oscillator basis, (xiv) fixed omega partitions, (xv) consistency formula between energy and fields, and we corrected several errors in the previous versions.
Main Authors
Format
Articles
Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
IOP Publishing
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202110265414Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0954-3899
DOI
https://doi.org/10.1088/1361-6471/ac0a82
Language
English
Published in
Journal of Physics G: Nuclear and Particle Physics
Citation
- Dobaczewski, J., Bączyk, P., Becker, P., Bender, M., Bennaceur, K., Bonnard, J., Gao, Y., Idini, A., Konieczka, M., Kortelainen, M., Próchniak, L., Romero, A. M., Satuła, W., Shi, Y., Werner, T. R., & Yu, L. F. (2021). Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (v3.06h) : a new version of the program. Journal of Physics G: Nuclear and Particle Physics, 48(10), Article 102001. https://doi.org/10.1088/1361-6471/ac0a82
Additional information about funding
This work was partially supported by the STFC Grant Nos. ST/M006433/1 and ST/P003885/1, and by the Polish National Science Centre under Contract No. 2018/31/B/ST2/02220. The work of MB and KB was supported by the Agence Nationale de la Recherche under Grant No. 19-CE31-0015-01 (NEWFUN).
Copyright© 2021 The Author(s). Published by IOP Publishing Ltd