Näytä suppeat kuvailutiedot

dc.contributor.authorJaye, Benjamin
dc.contributor.authorTolsa, Xavier
dc.contributor.authorVilla, Michele
dc.date.accessioned2021-09-29T09:23:05Z
dc.date.available2021-09-29T09:23:05Z
dc.date.issued2021
dc.identifier.citationJaye, B., Tolsa, X., & Villa, M. (2021). A proof of Carleson's 𝜀2-conjecture. <i>Annals of Mathematics</i>, <i>194</i>(1), 97-161. <a href="https://doi.org/10.4007/annals.2021.194.1.2" target="_blank">https://doi.org/10.4007/annals.2021.194.1.2</a>
dc.identifier.otherCONVID_99293227
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77963
dc.description.abstractIn this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson 𝜀2-square function.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMathematics Department, Princeton University
dc.relation.ispartofseriesAnnals of Mathematics
dc.rightsIn Copyright
dc.subject.otherrectifiability
dc.subject.othersquare function
dc.subject.othertangent
dc.subject.otherJordan curve
dc.titleA proof of Carleson's 𝜀2-conjecture
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202109295027
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange97-161
dc.relation.issn0003-486X
dc.relation.numberinseries1
dc.relation.volume194
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 Department of Mathematics, Princeton University.
dc.rights.accesslevelopenAccessfi
dc.subject.ysomittateoria
dc.subject.ysoharmoninen analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.4007/annals.2021.194.1.2
jyx.fundinginformationB. J. was partially supported by NSF through DMS-1800015 (now DMS-2103534) and the CAREER Award DMS-1847301 (now DMS-2049477). X.T. was partially supported by MTM-2016-77635-P (MICINN, Spain) and 2017-SGR-395 (AGAUR, Catalonia). M.V. was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright