Show simple item record

dc.contributor.authorJaye, Benjamin
dc.contributor.authorTolsa, Xavier
dc.contributor.authorVilla, Michele
dc.date.accessioned2021-09-29T09:23:05Z
dc.date.available2021-09-29T09:23:05Z
dc.date.issued2021
dc.identifier.citationJaye, B., Tolsa, X., & Villa, M. (2021). A proof of Carleson's 𝜀2-conjecture. <i>Annals of Mathematics</i>, <i>194</i>(1), 97-161. <a href="https://doi.org/10.4007/annals.2021.194.1.2" target="_blank">https://doi.org/10.4007/annals.2021.194.1.2</a>
dc.identifier.otherCONVID_99293227
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77963
dc.description.abstractIn this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson 𝜀2-square function.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMathematics Department, Princeton University
dc.relation.ispartofseriesAnnals of Mathematics
dc.rightsIn Copyright
dc.subject.otherrectifiability
dc.subject.othersquare function
dc.subject.othertangent
dc.subject.otherJordan curve
dc.titleA proof of Carleson's 𝜀2-conjecture
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202109295027
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange97-161
dc.relation.issn0003-486X
dc.relation.numberinseries1
dc.relation.volume194
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 Department of Mathematics, Princeton University.
dc.rights.accesslevelopenAccessfi
dc.subject.ysomittateoria
dc.subject.ysoharmoninen analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.4007/annals.2021.194.1.2
jyx.fundinginformationB. J. was partially supported by NSF through DMS-1800015 (now DMS-2103534) and the CAREER Award DMS-1847301 (now DMS-2049477). X.T. was partially supported by MTM-2016-77635-P (MICINN, Spain) and 2017-SGR-395 (AGAUR, Catalonia). M.V. was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright