Show simple item record

dc.contributor.authorRaatikainen, Peter
dc.contributor.authorHautala, Jarkko
dc.contributor.authorLoberg, Otto
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorLeppänen, Paavo
dc.contributor.authorNieminen, Paavo
dc.date.accessioned2021-09-17T06:18:52Z
dc.date.available2021-09-17T06:18:52Z
dc.date.issued2021
dc.identifier.citationRaatikainen, P., Hautala, J., Loberg, O., Kärkkäinen, T., Leppänen, P., & Nieminen, P. (2021). Detection of developmental dyslexia with machine learning using eye movement data. <i>Array</i>, <i>12</i>, Article 100087. <a href="https://doi.org/10.1016/j.array.2021.100087" target="_blank">https://doi.org/10.1016/j.array.2021.100087</a>
dc.identifier.otherCONVID_100335752
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77808
dc.description.abstractDyslexia is a common neurocognitive learning disorder that can seriously hinder individuals’ aspirations if not detected and treated early. Instead of costly diagnostic assessment made by experts, in the near future dyslexia might be identified with ease by automated analysis of eye movements during reading provided by embedded eye tracking technology. However, the diagnostic machine learning methods need to be optimized first. Previous studies with machine learning have been quite successful in identifying dyslexic readers, however, using contrasting groups with large performance differences between diagnosed and good readers. A practical challenge is to identify also individuals with borderline skills. Here, machine learning methods were used to identify individuals with low performance of reading fluency (below 10 percentile from a normal distribution) using their eye movement recordings of reading. Random Forest was used to select most important eye movement features to be used as input to a Support Vector Machine classifier. This hybrid method was capable of reliably identifying dysfluent readers and it also provided insight into the data used. Our best model achieved accuracy of 89.7% with recall of 84.8%. Our results thus establish groundwork for automatic detection of dyslexia in a natural reading situation.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesArray
dc.rightsCC BY 4.0
dc.subject.othersupport vector machine
dc.subject.otherrandom forest
dc.subject.otherdyslexia
dc.titleDetection of developmental dyslexia with machine learning using eye movement data
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202109174883
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2590-0056
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors. Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber311877
dc.relation.grantnumber274022
dc.subject.ysosilmänliikkeet
dc.subject.ysodysleksia
dc.subject.ysokoneoppiminen
dc.subject.ysodiagnostiikka
dc.subject.ysooppimisvaikeudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23744
jyx.subject.urihttp://www.yso.fi/onto/yso/p5303
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p5302
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.array.2021.100087
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThis research was supported by the Academy of Finland , grants #274022, #311877, and #317030.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0