Show simple item record

dc.contributor.authorCarbotti, Alessandro
dc.contributor.authorDon, Sebastiano
dc.contributor.authorPallara, Diego
dc.contributor.authorPinamonti, Andrea
dc.date.accessioned2021-09-01T07:04:32Z
dc.date.available2021-09-01T07:04:32Z
dc.date.issued2021
dc.identifier.citationCarbotti, A., Don, S., Pallara, D., & Pinamonti, A. (2021). Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups. <i>ESAIM : Control, Optimisation and Calculus of Variations</i>, <i>27</i>(Supplement), Article S11. <a href="https://doi.org/10.1051/cocv/2020055" target="_blank">https://doi.org/10.1051/cocv/2020055</a>
dc.identifier.otherCONVID_51962967
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77625
dc.description.abstractWe prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi’s rectifiability theorem holds, we provide a lower bound for the Γ-liminf of the rescaled energy in terms of the horizontal perimeter.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherEDP Sciences
dc.relation.ispartofseriesESAIM : Control, Optimisation and Calculus of Variations
dc.rightsIn Copyright
dc.subject.otherCarnot groups
dc.subject.othercalibrations
dc.subject.othernonlocal perimeters
dc.subject.otherΓ-convergence
dc.subject.othersets of finite perimeter
dc.subject.otherrectifiability
dc.titleLocal minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202109014750
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn1292-8119
dc.relation.numberinseriesSupplement
dc.relation.volume27
dc.type.versionpublishedVersion
dc.rights.copyright© EDP Sciences, SMAI 2021
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber288501
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber322898
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysodifferentiaaligeometria
dc.subject.ysovariaatiolaskenta
dc.subject.ysomatemaattinen optimointi
dc.subject.ysoryhmäteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
jyx.subject.urihttp://www.yso.fi/onto/yso/p17635
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1051/cocv/2020055
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiatutkijan tehtävä, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramResearch post as Academy Research Fellow, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationS.D. has been partially supported by the Academy of Finland (grant 288501 “Geometry of subRiemannian groups” and grant 322898 “Sub-Riemannian geometry via metric-geometry and Lie-group theory”) and by the European Research Council (ERC Starting Grant 713998 GeoMeG “Geometry of metric groups”). D.P. is member of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM) and has been partially supported by the PRIN 2015 MIUR project 2015233N54. A.P. is member of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM).


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright