Näytä suppeat kuvailutiedot

dc.contributor.advisorJuutinen, Petri
dc.contributor.authorOkkolin, Pauliina
dc.date.accessioned2021-08-17T05:59:59Z
dc.date.available2021-08-17T05:59:59Z
dc.date.issued2021
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77376
dc.description.abstractTämä tutkielma käsittelee Brachistochrone-ongelmana tunnettavaa minimointiongelmaa. Ongelmassa on ideana löytää kahden tason pisteen A ja B välinen käyrä, joka minimoi ajan, joka massalliselta kappaleelta kuluu liukua pisteestä A pisteeseen B. Ongelma ratkaistaan tässä työssä variaatiolaskentaa hyödyntäen ja siten työ esittelee Brachistochrone-ongelman lisäksi myös tiettyjä variaatiolaskennan perusideoita. Variaatiolaskenta on matemaattisen analyysin ala, joka tarjoaa keinoja ääriarvotehtävien ratkaisemiseen, kun minimoitavat kuvaukset ovat funktioavaruuksista reaaliluvuille määriteltyjä funktionaaleja. Tutkielmassa esitellään aluksi, kuinka sanallisesti muotoiltu ongelma saadaan johdettua matemaattiseen muotoon. Sen jälkeen perehdytään ongelman varsinaiseen ratkaisemiseen. Nykyään yleisesti tunnetaan, että Brachistochrone-ongelman ratkaiseva käyrä on sykloidi. Työssä näytetään, kuinka sykloidi variaatiolaskennan avulla lähtökohtaisesti löydetään. Keskeisin työkalu on variaatiolaskennan oleellisimpiin välineisiin kuuluva Euler-Lagrangen differentiaaliyhtälö. Työssä osoitetaan, että Brachistochrone-ongelman ratkaisun on välttämättä toteutettava Euler-Lagrangen yhtälö. Lisäksi näytetään, että jos Brachistochrone-ongelmalla on ratkaisu, se toteuttaa myös Beltrami-yhtälöksi kutsuttavan differentiaaliyhtälön. Beltrami-yhtälö ratkaisemalla saadaan näytettyä, että ongelman mahdollinen ratkaisu on sykloidi. Työn viimeinen vaihe on todistaa Brachistochrone-ongelman ratkaisun olemassaolo ja siten näyttää, että sykloidi todella ratkaisee ongelman. Olemassaolo todistetaan erään riittävän ehdon avulla, joka kertoo, milloin Euler-Lagrangen yhtälön toteuttava funktio on variaatio-ongelman ratkaisu. Työssä esiteltävä riittävä ehto hyödyntää funktioiden konveksisuutta. Riittävä ehto ei ole suoraan sovellettavissa Brachistochrone-ongelmaan, joten työssä päädytään vielä tarkastelemaan toista minimointiongelmaa, joka ratkaisemalla myös Brachistochrone-ongelma saadaan ratkaistua.fi
dc.format.extent43
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.subject.otherminimointiongelmat
dc.subject.otherbrakistokroni
dc.subject.otherEuler-Lagrangen yhtälö
dc.titleBrachistochrone-ongelma
dc.identifier.urnURN:NBN:fi:jyu-202108174539
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysovariaatiolaskenta
dc.subject.ysomatemaattinen analyysi
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot