Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
Abstract
Ihmisen tuottaman liikkeen määrittämiseen käytetään yleensä optoelektronisia liikkeenkaappausjärjestelmiä, jotka perustuvat kohteen iholle kiinnitettävien valoa heijastavien markkerien seurantaan. Nämä laboratorio-olosuhteissa tarkat ja luotettavat järjestelmät ovat kuitenkin kalliita, mittaustapahtuman valmistelu vie reilusti aikaa, ja markkerit voivat estää kohteen luonnollisen liikkumisen. Konenäön kehittymisen myötä syväoppimiseen perustuvien menetelmien käyttö ihmisen asennon määrittelyssä on yleistynyt ja niiden on osoitettu olevan ihmisen kanssa yhtä tarkkoja merkitsemään avainkohtia kuviin. Aikaisemmissa tutkimuksissa suoritetuissa kinemaattisissa vertailuissa avainpisteet eivät ole olleet anatomisesti tarkkoja, biomekaaniset mallit ovat olleet erilaiset menetelmien välillä, eikä markkerien vaikutusta syväoppimismallien suorituskykyyn ole huomioitu. Tämän tutkimuksen tarkoituksena oli tutkia miten markkerien läsnäolo harjoitusnäytteissä vaikuttaa mallien suorituskykyyn, kun niitä sovelletaan 3D-liikeanalyysiin ja verrataan optoelektroniseen järjestelmään.
18 koehenkilöä käveli ja juoksi juoksumatolla eri vauhdeilla samalla, kun heidän liikkumistaan tallennettiin kahdella kahdeksankameraisella järjestelmällä: optoelektroninen Vicon-järjestelmä (300 Hz) ja GoPro-järjestelmä (60 Hz). Kaksi syväoppimismallia kehitettiin GoPro-järjestelmällä tallennettujen harjoitusnäytteiden perusteella siten, että toiseen käytettiin näytteitä, joissa markkerit olivat läsnä, ja toiseen näytteitä ilman markkereita. Kävely- ja juoksunäytteet analysoitiin molemmilla malleilla ja kinemaattisia tuloksia verrattiin tuloksiin Vicon-järjestelmästä. Lisäksi, Viconilla mitattujen kinemaattisten muuttujien toistettavuus samalla koehenkilöllä laskettiin, jotta yksilön askelten välinen vaihtelu voitiin määrittää.
3D-liikeanalyysi epäonnistui mallien heikon suorituskyvyn takia, mutta sagittaalitason 2D-liikeanalyysi voitiin suorittaa oikean jalan nilkalle ja polvelle. Markkerien läsnäololla ei ollut selkeää vaikutusta mallien suorituskykyyn. Mallien suorituskyky oli lähes yhtäläinen markkerien ollessa läsnä näytteissä, eikä kumpikaan kyennyt kelvollisesti analysoimaan näytteitä, joissa ei ollut markkereita. SPM-analyysi paljasti, että menetelmien välillä havaittiin yksi tilastollisesti merkitsevä joukko polvessa ja kahdeksan nilkassa. Toistettavuus oli suurimmassa osaa näytteitä riittävä kliinisiin mittauksiin (ICC > 0.9), mutta pisteittäinen analyysi osoitti toistettavuuden vaihtelevan askelsyklin aikana. On mahdollista, että syväoppimismalleja voidaan tulevaisuudessa käyttää 3D-liikeanalyysissä, jos olosuhteet ovat asianmukaiset. Tässä tutkimuksessa markkerien läsnäololla harjoitusnäytteissä ei ollut vaikutusta syväoppimismallien suorituskykyyn sovellettaessa 2D-liikeanalyysiin.
Main Author
Format
Theses
Master thesis
Published
2021
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202108124521Käytä tätä linkitykseen.
Language
English