Color charge correlations in the proton at NLO : beyond geometry based intuition

Abstract
Color charge correlators provide fundamental information about the proton structure. In this Letter, we evaluate numerically two-point color charge correlations in a proton on the light cone including the next-to-leading order corrections due to emission or exchange of a perturbative gluon. The non-perturbative valence quark structure of the proton is modelled in a way consistent with high-x proton structure data. Our results show that the correlator exhibits startlingly non-trivial behavior at large momentum transfer or central impact parameters, and that the color charge correlation depends not only on the impact parameter but also on the relative transverse momentum of the two gluon probes and their relative angle. Furthermore, from the two-point color charge correlator, we compute the dipole scattering amplitude. Its azimuthal dependence differs significantly from a impact parameter dependent McLerran-Venugopalan model based on geometry. Our results also provide initial conditions for Balitsky-Kovchegov evolution of the dipole scattering amplitude. These initial conditions depend not only on the impact parameter and dipole size vectors, but also on their relative angle and on the light-cone momentum fraction x in the target.
Main Authors
Format
Articles Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
Elsevier
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202108104469Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0370-2693
DOI
https://doi.org/10.1016/j.physletb.2021.136560
Language
English
Published in
Physics Letters B
Citation
License
CC BY 4.0Open Access
Funder(s)
European Commission
Research Council of Finland
Funding program(s)
RIA Research and Innovation Action, H2020
Postdoctoral Researcher, AoF
RIA Research and Innovation Action, H2020
Tutkijatohtori, SA
European CommissionResearch Council of Finland
Additional information about funding
This work was supported by the Academy of Finland, projects 314764 (H.M) and 1322507 (R.P). H.M. is supported under the European Union's Horizon 2020 research and innovation programme STRONG-2020 project (grant agreement no. 824093), and R.P. by the European Research Council grant agreement no. 725369. A.D. thanks the U.S. Department of Energy, Office of Nuclear Physics, for support via Grant DE-SC0002307.
Copyright© 2021 the Authors

Share