dc.contributor.author | Kuznetsov, N. V. | |
dc.contributor.author | Mokaev, T. N. | |
dc.contributor.author | Kudryashova, E. V. | |
dc.contributor.author | Kuznetsova, O. A. | |
dc.contributor.author | Danca, M.-F. | |
dc.contributor.editor | Danciu, Daniela | |
dc.date.accessioned | 2021-08-03T11:29:26Z | |
dc.date.available | 2021-08-03T11:29:26Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Kuznetsov, N. V., Mokaev, T. N., Kudryashova, E. V., Kuznetsova, O. A., & Danca, M.-F. (2019). On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems. In D. Danciu (Ed.), <i>15th IFAC Workshop on Time Delay Systems TDS 2019 Sinaia, Romania, 9–11 September 2019</i> (52). IFAC; Elsevier. IFAC-PapersOnLine. <a href="https://doi.org/10.1016/j.ifacol.2019.12.213" target="_blank">https://doi.org/10.1016/j.ifacol.2019.12.213</a> | |
dc.identifier.other | CONVID_34030121 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/77268 | |
dc.description.abstract | In this paper, on the example of the Rössler systems, the application of the Pyragas time-delay feedback control technique for verification of Eden’s conjecture on the maximum of local Lyapunov dimension, and for the estimation of the topological entropy is demonstrated. To this end, numerical experiments on computation of finite-time local Lyapunov dimensions and finite-time topological entropy on a Rössler attractor and embedded unstable periodic orbits are performed. The problem of reliable numerical computation of the mentioned dimension-like characteristics along the trajectories over large time intervals is discussed. | en |
dc.format.extent | 178 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IFAC; Elsevier | |
dc.relation.ispartof | 15th IFAC Workshop on Time Delay Systems TDS 2019 Sinaia, Romania, 9–11 September 2019 | |
dc.relation.ispartofseries | IFAC-PapersOnLine | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | chaos | |
dc.subject.other | hidden | |
dc.subject.other | self-excited attractors | |
dc.subject.other | Lyapunov dimension | |
dc.subject.other | Lyapunov exponents | |
dc.subject.other | unstable periodic orbit | |
dc.subject.other | time-delay feedback control | |
dc.title | On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202108034436 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2405-8971 | |
dc.relation.numberinseries | 18 | |
dc.relation.volume | 52 | |
dc.rights.copyright | © 2019 IFAC | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | IFAC Workshop on Time Delay Systems | |
dc.format.content | fulltext | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.ifacol.2019.12.213 | |
jyx.fundinginformation | This work was supported by the Russian Science Foundation 19-41-02002. | |
dc.type.okm | A4 | |