Näytä suppeat kuvailutiedot

dc.contributor.advisorJohansson, Andreas
dc.contributor.advisorHiltunen, Jussi
dc.contributor.authorHuikuri, Arttu
dc.date.accessioned2021-08-02T06:35:09Z
dc.date.available2021-08-02T06:35:09Z
dc.date.issued2021
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77241
dc.description.abstractLämmön siirtymistä polydimetyylisiloksaanissa (PDMS), jota käytetään mikrofluidisten alustojen valmistuksessa, mallinnettiin elementtimallinnussimulaatioilla (FEM) ja simulaatioiden tuloksia verrattiin kokeellisiin tuloksiin, jotka mitattiin PDMS -näytteestä. Pysyvän tilan kuumennussimulaatioissa kakki tulokset olivat 0.81K sisällä toisistaan ja useimmat tulokset olivat 0.2K sisällä toisistaan. Ajasta riippuvissa kuumennusmittauksissa ja -simulaatiossa PDMS:n lämpötila muuttui nopeammin simulaatioissa kuin kokeissa. Elementtisimulaatioita käytettiin myös PDMS mikrofluidiikkojen simulaatioon kahdella kuumentimella. Lämpölevykuumennusta käyttämällä simuloitiin lämpögradientti PDMS mikrofluidiikan yli. Pistelämmönlähteiden kanssa FEM simulaatioita käytettiin optimisaatioalgoritmin bisektiometodin kanssa optimaalisen lämmitystehon löytämiseksi 0.1mW virhetoleranssilla.fi
dc.description.abstractThermal transport in polydimethylsiloxane (PDMS), which is used to fabricate microfluidic platforms, was modelled with finite element method (FEM) simulations and the results of the simulations were compared to experimental results measured from a PDMS sample. In steady-state heating simulations all of the results were within 0.81K of each other and most of the results were within 0.2K of each other. In time-dependent heating measurements and simulations the temperature of the PDMS was found to change faster in the simulations than the experiments. FEM was then used to simulate the heating of PDMS microfluidics with two different heaters. Using a hot plate heater the temperature gradient over the PDMS microfluidic was simulated. With point heaters FEM simulations were used with the bisection method optimization algorithm to find optimal heating power values with an error tolerance of 0.1mW.en
dc.format.extent72
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleThermal transport in PDMS microfluidics
dc.identifier.urnURN:NBN:fi:jyu-202108024409
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4021
dc.subject.ysolämpötila
dc.subject.ysosimulointi
dc.subject.ysoelementtimenetelmä
dc.subject.ysomittaus
dc.subject.ysolämmön kuljetus
dc.subject.ysolämmön johtuminen
dc.subject.ysomallintaminen
dc.subject.ysotemperature
dc.subject.ysosimulation
dc.subject.ysofinite element method
dc.subject.ysomeasurement
dc.subject.ysoheat convection
dc.subject.ysoheat conduction
dc.subject.ysomodelling (creation related to information)
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot