Space and time averaged quantum stress tensor fluctuations

Abstract
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-ordered square of the time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the tails of these distributions confirms previous results based on the analytical treatment of the high moments. We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and opening up the possibility of experimental observation under the right conditions.
Main Authors
Format
Articles Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
American Physical Society (APS)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202107164336Use this for linking
Review status
Peer reviewed
ISSN
2470-0010
DOI
https://doi.org/10.1103/PhysRevD.103.125014
Language
English
Published in
Physical Review D
Citation
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Academy Project, AoF
Akatemiahanke, SA
Research Council of Finland
Additional information about funding
This work was supported by the Academy of Finland Grant No. 318319 and by the National Science Foundation under Grant No. PHY-1912545.
Copyright© Authors, 2021

Share