Show simple item record

dc.contributor.authorNordhausen, Klaus
dc.contributor.authorMatilainen, Markus
dc.contributor.authorMiettinen, Jari
dc.contributor.authorVirta, Joni
dc.contributor.authorTaskinen, Sara
dc.date.accessioned2021-07-14T08:02:16Z
dc.date.available2021-07-14T08:02:16Z
dc.date.issued2021
dc.identifier.citationNordhausen, K., Matilainen, M., Miettinen, J., Virta, J., & Taskinen, S. (2021). Dimension Reduction for Time Series in a Blind Source Separation Context Using R. <i>Journal of Statistical Software</i>, <i>98</i>, Article 15. <a href="https://doi.org/10.18637/jss.v098.i15" target="_blank">https://doi.org/10.18637/jss.v098.i15</a>
dc.identifier.otherCONVID_99018050
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77132
dc.description.abstractMultivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherFoundation for Open Access Statistic
dc.relation.ispartofseriesJournal of Statistical Software
dc.rightsCC BY 3.0
dc.subject.otherblind source separation
dc.subject.othersupervised dimension reduction
dc.subject.otherR
dc.titleDimension Reduction for Time Series in a Blind Source Separation Context Using R
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202107144317
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1548-7660
dc.relation.volume98
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosignaalianalyysi
dc.subject.ysoaikasarja-analyysi
dc.subject.ysosignaalinkäsittely
dc.subject.ysomonimuuttujamenetelmät
dc.subject.ysoR-kieli
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p22747
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p2131
jyx.subject.urihttp://www.yso.fi/onto/yso/p24355
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.18637/jss.v098.i15
jyx.fundinginformationThe work of KN was supported by the CRoNoS COST Action IC1408 and the Austrian Science Fund P31881-N32. The work of ST was supported by the CRoNoS COST Action IC1408. The work of JV was supported by Academy of Finland (grant 321883).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 3.0
Except where otherwise noted, this item's license is described as CC BY 3.0