Näytä suppeat kuvailutiedot

dc.contributor.authorBoguslavski, K.
dc.contributor.authorKurkela, A.
dc.contributor.authorLappi, T.
dc.contributor.authorPeuron, J.
dc.date.accessioned2021-07-08T06:39:34Z
dc.date.available2021-07-08T06:39:34Z
dc.date.issued2021
dc.identifier.citationBoguslavski, K., Kurkela, A., Lappi, T., & Peuron, J. (2021). Broad excitations in a 2+1D overoccupied gluon plasma. <i>Journal of High Energy Physics</i>, <i>2021</i>(5), Article 225. <a href="https://doi.org/10.1007/JHEP05(2021)225" target="_blank">https://doi.org/10.1007/JHEP05(2021)225</a>
dc.identifier.otherCONVID_98896966
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77051
dc.description.abstractMotivated by the initial stages of high-energy heavy-ion collisions, we study excitations of far-from-equilibrium 2+1 dimensional gauge theories using classical-statistical lattice simulations. We evolve field perturbations over a strongly overoccupied background undergoing self-similar evolution. While in 3+1D the excitations are described by hard-thermal loop theory, their structure in 2+1D is nontrivial and nonperturbative. These nonperturbative interactions lead to broad excitation peaks in spectral and statistical correlation functions. Their width is comparable to the frequency of soft excitations, demonstrating the absence of soft quasiparticles in these theories. Our results also suggest that excitations at higher momenta are sufficiently long-lived, such that an effective kinetic theory description for 2+1 dimensional Glasma-like systems may exist, but its collision kernel must be nonperturbatively determined.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesJournal of High Energy Physics
dc.rightsCC BY 4.0
dc.titleBroad excitations in a 2+1D overoccupied gluon plasma
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202107084237
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1126-6708
dc.relation.numberinseries5
dc.relation.volume2021
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors. Article funded by SCOAP3.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber321840
dc.relation.grantnumber824093
dc.relation.grantnumber824093
dc.relation.grantnumber681707
dc.relation.grantnumber681707
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/681707/EU//CGCglasmaQGP
dc.subject.ysokvarkki-gluoniplasma
dc.subject.ysohiukkasfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38826
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/JHEP05(2021)225
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramERC European Research Council, H2020en
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundingprogramERC European Research Council, H2020fi
jyx.fundinginformationThis work has been supported by the European Research Council under grant no. ERC-2015-CoG-681707, by the EU Horizon 2020 research and innovation programme, STRONG-2020 project (grant agreement No 824093) and by the Academy of Finland, project 321840. This work was funded in part by the Knut and Alice Wallenberg foundation, contract number 2017.0036.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0