Methods to extract multi-dimensional features of event-related brain activities from EEG data
Cognitive processes are studied, among others, by analyzing event-related potentials/oscillations (ERPs/EROs) with various signal processing techniques. The commonly used processing techniques have, however, various limitations. For example, temporal principal component analysis (t-PCA) assumes, contrary to the actual situation, that waveforms of the PCA-extracted component for all subjects are the same. Also, several PCA-extracted components cannot be analyzed simultaneously since their amplitudes and polarities are diversiform. Moreover, conventional time-frequency analysis (TFA) can not effciently distinguish between evoked EROs mixed in temporal and spectral domains. Additionally, induced EROs are usually investigated using TFA, which ignores the interactions of induced EROs in temporal, spectral, and spatial domains.
This thesis develops some EEG analysis algorithms and provides novel frameworks to investigate the cognitive mechanisms of ERPs/EROs. Specifcally, in the frst study, to address the problems in t-PCA, we introduce back-projection theory into t-PCA for solving the problem that several extracted components fail to be analyzed simultaneously. ERPs are extracted from single-trial EEG of an individual subject to address the unreasonable hypothesis in the group PCA analysis. In the second study, we explore evoked EROs to study some cognitive process stages that have not been explained accurately before. This is achieved by frst extracting the ERPs of interest in the time domain using t-PCA and then transforming the reconstructed waveforms of ERPs into time-frequency representations (TFRs). In the third study, we exploit canonical polyadic tensor decomposition to analyze the multi-domain features of induced EROs from the fourth-order tensor formed by TFRs of single-trial EEG data. This enables us to reveal potential interactions of different modes in induced EROs.
In conclusion, the thesis introduces some new signal processing techniques and novel frameworks to study the dynamics of ERPs/EROs effciently, which are validated using actual and synthetic EEG/ERP data.
Keywords: Event-related potentials/oscillations, principal component analysis, time-frequency analysis, tensor decomposition.
...
Kognitiivisia prosesseja tutkitaan muun muassa analysoimalla signaalinkäsittelyn keinoin erilaisia EEG:ssä havaittuja vasteita ulkoisiin ärsykkeisiin (ns. ERP/ERO, event-related pontetial/oscillation). Yleisimpiin menetelmiin liittyy kuitenkin selkeitä rajoitteita. Esimerkiksi ajallinen pääkomponenttianalyysi (t-PCA) olettaa, vastoin todellisuutta, että eri yksilöillä vasteajat ja -muodot ovat samat ja vain amplituudi vaihtelee. Pääkomponenttianalyysi ei myöskään sovellu usean rinnakkaisen vasteen analysointiin, koska vasteiden polariteetit vaihtelevat. Perinteinen aika-taajuusanalyysi (TFA) ei puolestaan tunnista ajan ja taajuuden suhteen sekottuneita herätevasteita. Sama pätee myös herätevasteiden indusoimien vasteiden analyysiin. Vasteiden useampiulotteisia vuorovaikutuksia ajan, taajuuden ja paikan suhteen ei voida eritellä.
Tässä työssä kehitetään EEG analyysimenetelmiä ja uusia viitekehyksiä, joilla voidaan tutkia ERP ja ERO signaaleihin liittyviä kognitiivisia mekanismeja. Ensimmäisessä osatutkimuksessa sovelletaan takaisinprojisoinnin tekniikkaa ajalliseen pääkomponenttianalyysiin (t-PCA) ja mahdollistetaan näin useamman samanaikaisen vasteen erottelu. Lisäksi osoitetaan, että menetelmää voi soveltaa ilman rajoittavaa oletusta vasteiden samankaltaisuudesta eri yksilöiden välillä. Toisessa tutkimuksessa yhdistettiin t-PCA menetelmä ja sen avulla rekonstruoidut vasteet aika-taajuus analyysiin (TFR). Näin pystyttiin saamaan tarkempaa tietoa herätteen aiheuttaman värähtelyn (ERO) dynamiikasta ja edelleen tämän taustalla olevista kognitiivisista prosesseista. Kolmannessa tutkimuksessa sovellettiin moniulotteista tensorihajotelmaa (canonical polyadic tensor decomposition) neliulotteiseen aika-taajuus muotoiseen EEG-dataan. Näin pystyttiin analysoimaan herätteiden indusoimia värähtelyjä (ERO) yhtäaikaisesti useamman tekijän suhteen ja tunnistamaan eri tekijöiden yhteisvaikutuksia aiempaa paremmin.
Yhteenvetona työssä esiteltiin uusia signaalinkäsittelytekniikoita ja lähestymistapoja ERP/ERO signaalien dynamiikan tehokkaaseen analyysiin. Uudet menetelmät validoitiin sekä synteettisellä että todellisella EEG-datalla.
Avainsanat: Aika-taajuusanalyysi, pääkomponenttianalyysi, herätepotentiaali, herätevärähtely, tensorihajotelmat
...




ISBN
978-951-39-8746-6Contains publications
- Artikkeli I: Zhang, Guanghui; Li, Xueyan; Lu, Yingzhi; Tiihonen, Timo; Chang, Zheng and Cong, Fengyu (2021). Single-trial-based Temporal Principal Component Analysis on Extracting Event-related Potentials of Interest for an Individual Subject. To be submitted.
- Artikkeli II: Zhang, G., Tian, L., Chen, H., Li, P., Ristaniemi, T., Wang, H., Li, H., Chen, H., & Cong, F. (2017). Effect of parametric variation of center frequency and bandwidth of morlet wavelet transform on time-frequency analysis of event-related potentials. In Y. Jia, J. Du, & W. Zhang (Eds.), CISC 2017 : Proceedings of 2017 Chinese Intelligent Systems Conference (pp. 693-702). Springer Nature Singapore Pte Ltd.. Lecture Notes in Electrical Engineering, 459. DOI: 10.1007/978-981-10-6496-8_63
- Artikkeli III: Zhang, G., Li, X., & Cong, F. (2020). Objective Extraction of Evoked Event-Related Oscillation from Time-Frequency Representation of Event-Related Potentials. Neural Plasticity, 2020, Article 8841354. DOI: 10.1155/2020/8841354
- Artikkeli IV: Zhang, G., Zhang, C., Cao, S., Xia, X., Tan, X., Si, L., Wang, C., Wang, X., Zhou, C., Ristaniemi, T., & Cong, F. (2020). Multi-domain Features of the Non-phase-locked Component of Interest Extracted from ERP Data by Tensor Decomposition. Brain Topography, 33(1), 37-47. DOI: 10.1007/s10548-019-00750-8
- Artikkeli V: Zhang, Guanghui; Li, Xueyan; Wang, Xiulin; Liu, Wenya; Zhu, Yongjie; Wang, Xiaoshuang; Mahini, Reza; Fu, Rao; Chang, Zheng; Tiihonen, Timo and Cong, Fengyu (2021). Signal Processing Techniques for Event-related Potentials: from Single-way to Multi-way Component Analysis. To be submitted.
Metadata
Show full item recordCollections
- Väitöskirjat [3178]
Related items
Showing items with similar title or keywords.
-
Evaluation and extraction of mismatch negativity through exploiting temporal, spectral, time-frequency, and spatial features
Cong, Fengyu (University of Jyväskylä, 2010) -
Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
Wang, Deqing; Zhu, Yongjie; Ristaniemi, Tapani; Cong, Fengyu (Elsevier BV, 2018)Background Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden ... -
Empirical study of multidimensional Child-Langmuir law with plasma ion source extraction using round apertures
Kosonen, S. T.; Kalvas, T.; Tarvainen, O.; Toivanen, V. (IOP Publishing, 2022)One dimensional Child-Langmuir (CL) law is commonly used in ion source physics to describe space charge limited ion extraction from the plasma. Recently 2D and 3D CL laws have been derived, but plasma ion extraction does ... -
Musical Self-Concept - Presentation of a Multi-Dimensional Model and Its Empirical Analyses
Spychiger, Maria; Gruber, Lucia; Olbertz, Franziska (2009)Research on the specific domain of musical self-concept was so far exclusively concerned with musically active subjects (such as performers, music teachers, students, or singing children). In contrast, the starting base ... -
Human Wellbeing – Nature relationships in rural Sub-Saharan Africa – developing a protocol for the consideration of the natural environmental in multi-dimensional poverty indices
Schaafsma, Marije; Gross-Camp, Nicole (Open Science Centre, University of Jyväskylä, 2018)The natural environment is included in several Sustainable Development Goals (SDGs), including the first SDG of eradicating poverty. In countries like Rwanda and Malawi, despite repeated emphasis of the dependence on natural ...