Plenty of big projections imply big pieces of Lipschitz graphs
Orponen, T. (2021). Plenty of big projections imply big pieces of Lipschitz graphs. Inventiones Mathematicae, 226(2), 653-709. https://doi.org/10.1007/s00222-021-01055-z
Published in
Inventiones MathematicaeAuthors
Date
2021Copyright
© The Author(s) 2021
I prove that closed n-regular sets E⊂Rd with plenty of big projections have big pieces of Lipschitz graphs. In particular, these sets are uniformly n-rectifiable. This answers a question of David and Semmes from 1993.
Publisher
SpringerISSN Search the Publication Forum
0020-9910Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/97895696
Metadata
Show full item recordCollections
Additional information about funding
Open access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
Di Donato, Daniela; Fässler, Katrin (Springer, 2022)This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group Hn, n∈N. For 1⩽k⩽n, we show that every intrinsic L-Lipschitz graph over a subset ... -
Projections onto the Pareto surface in multicriteria radiation therapy optimization
Bokrantz, Rasmus; Miettinen, Kaisa (American Association of Physicists in Medicine, 2015)Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the ... -
Lipschitz-funktioiden tiheys Newton-Sobolev-avaruuksissa
Oksanen, Mika (2024)Tutkielmassa tarkastellaan Lipschitz-funktioiden tiheyttä Newton-Sobolev-avaruuksissa. Tiheyttä tarkastellaan sekä normin, että niin sanotun energian suhteen. -
Loomis-Whitney inequalities in Heisenberg groups
Fässler, Katrin; Pinamonti, Andrea (Springer Science and Business Media LLC, 2022)This note concerns Loomis–Whitney inequalities in Heisenberg groups Hn: |K|≲∏j=12n|πj(K)|n+1n(2n+1), K⊂Hn. Here πj, j=1,…,2n, are the vertical Heisenberg projections to the hyperplanes {xj=0}, respectively, and |⋅| refers ... -
The Unseen, the Discouraged, and the Outcast : Expressivity and the Foundations of Social Recognition
Taipale, Joona (De Gruyter, 2018)This article analyzes different pathologies of social affirmation and examines the grounds of social recognition from the point of view of the concept of expression. The red thread of the text is provided by Tove Jansson’s ...