Proton reduction by phosphinidene-capped triiron clusters

Abstract
Bis(phosphinidene)-capped triiron carbonyl clusters, including electron rich derivatives formed by substitution with chelating diphosphines, have been prepared and examined as proton reduction catalysts. Treatment of the known cluster [Fe3(CO)9(µ3-PPh)2] (1) with various diphosphines in refluxing THF (for 5, refluxing toluene) afforded the new clusters [Fe3(CO)7(µ3-PPh)2(κ2-dppb)] (2), [Fe3(CO)7(µ3-PPh)2(κ2-dppv)] (3), [Fe3(CO)7(µ3-PPh)2(κ2-dppe)] (4) and [Fe3(CO)7(µ3-PPh)2(µ-κ2-dppf)] (5) in moderate yields, together with small amounts of the corresponding [Fe3(CO)8(µ3-PPh)2(κ1-Ph2PxPPh2)] cluster (x = -C4H6-, -C2H2-, -C2H4-, -C3H6-, -C5H4FeC5H4-). The molecular structures of complexes 3 and 5 have been established by X-ray crystallography. Complexes 1–5 have been examined as proton reduction catalysts in the presence of p-toluenesulfonic acid (p-TsOH) in CH2Cl2. Cluster 1 exhibits two one-electron quasi-reversible reduction waves at –1.39 V (ΔE = 195 mV) and at –1.66 V (ΔE = 168 mV; potentials vs. Fc+/Fc). Upon addition of p-TsOH the unsubstituted cluster 1 shows a first catalytic wave at –1.57 V and two further proton reduction processes at –1.75 and –2.29 V, each with a good current response. The diphosphine-substituted derivatives of 1 are reduced at more negative potentials than the parent cluster 1. Clusters 2–4 each exhibit an oxidation at ca. +0.1 V and a reduction at ca. –1.6 V; for 4 conversion to a redox active successor species is seen upon both oxidation and reduction. Clusters 2–4 show catalytic waves in the presence of p-TsOH, with cluster 4 exhibiting the highest relative catalytic current (icat/i0 ≈ 57) in the presence of acid, albeit at a new third reduction process not observed for 2 and 3. Addition of the dppf ligand to the parent diphosphinidene cluster 1 gave cluster 5 which exhibited a single reduction process at –1.95 V and three oxidation processes, all at positive values as compared to 2–4. Cluster 5 showed only weak catalytic activity for proton reduction with p-TsOH. The bonding in 4 was investigated by DFT calculations, and the nature of the radical anion and dianion is discussed with respect to the electrochemical data.
Main Authors
Format
Articles Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
Elsevier BV
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202105283265Use this for linking
Review status
Peer reviewed
ISSN
0022-328X
DOI
https://doi.org/10.1016/j.jorganchem.2021.121816
Language
English
Published in
Journal of Organometallic Chemistry
Citation
  • Rahaman, A., Lisensky, G. C., Haukka, M., Tocher, D. A., Richmond, M. G., Colbran, S. B., & Nordlander, E. (2021). Proton reduction by phosphinidene-capped triiron clusters. Journal of Organometallic Chemistry, 943, Article 121816. https://doi.org/10.1016/j.jorganchem.2021.121816
License
CC BY-NC-ND 4.0Open Access
Additional information about funding
We thank the European Commission for the award of an Erasmus Mundus pre-doctoral fellowship to AR and MGR thanks the Robert A. Welch Foundation (Grant B-1093) for funding. The DFT calculations were performed at UNT through CASCaM, which is an NSF-supported facility (CHE-1531468).
Copyright© 2021 The Author(s). Published by Elsevier B.V.

Share