Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea
Abstract
Coastal environments are nitrogen (N) removal hot spots, which regulate the amount of land-derived N reaching the open sea. However, mixing between freshwater and seawater creates gradients of inorganic N and bioavailable organic matter, which affect N cycling. In this study, we compare nitrate reduction processes between estuary and offshore archipelago environments in the coastal Baltic Sea. Denitrification rates were similar in both environments, despite lower nitrate and carbon concentrations in the offshore archipelago. However, DNRA (dissimilatory nitrate reduction to ammonium) rates were higher at the offshore archipelago stations, with a higher proportion of autochthonous carbon. The production rate and concentrations of the greenhouse gas nitrous oxide (N2O) were higher in the estuary, where nitrate concentrations and allochthonous carbon inputs are higher. These results indicate that the ratio between nitrate and autochthonous organic carbon governs the balance between N-removing denitrification and N-recycling DNRA, as well as the end-product of denitrification. As a result, a significant amount of the N removed in the estuary is released as N2O, while the offshore archipelago areas are characterized by efficient internal recycling of N. Our results challenge the current understanding of the role of these regions as filters of land-to-sea transfer of N.
Main Authors
Format
Articles
Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
Elsevier
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202104272517Use this for linking
Review status
Peer reviewed
ISSN
0272-7714
DOI
https://doi.org/10.1016/j.ecss.2021.107369
Language
English
Published in
Estuarine, Coastal and Shelf Science
Citation
- Aalto, S. L., Asmala, E., Jilbert, T., & Hietanen, S. (2021). Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea. Estuarine, Coastal and Shelf Science, 255, Article 107369. https://doi.org/10.1016/j.ecss.2021.107369
Additional information about funding
This work was supported by the Academy of Finland (projects 267112, 309748, 310302, and 317684).
Copyright© 2021 Elsevier