Näytä suppeat kuvailutiedot

dc.contributor.authorHulkko, Eero
dc.contributor.authorPikker, Siim
dc.contributor.authorTiainen, Ville
dc.contributor.authorTichauer, Ruth H.
dc.contributor.authorGroenhof, Gerrit
dc.contributor.authorToppari, Jussi J.
dc.date.accessioned2021-04-23T09:40:28Z
dc.date.available2021-04-23T09:40:28Z
dc.date.issued2021
dc.identifier.citationHulkko, E., Pikker, S., Tiainen, V., Tichauer, R. H., Groenhof, G., & Toppari, J. J. (2021). Effect of molecular Stokes shift on polariton dynamics. <i>Journal of Chemical Physics</i>, <i>154</i>(15), 154303. <a href="https://doi.org/10.1063/5.0037896" target="_blank">https://doi.org/10.1063/5.0037896</a>
dc.identifier.otherCONVID_67999810
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75178
dc.description.abstractWhen the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light–matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry–Pérot cavities. Our results suggest that in the case of Rhodamine 6G, a dye with a significant Stokes shift, excitation of the upper polariton leads to a rapid localization of the energy into the fluorescing state of one of the molecules, from where the energy scatters into the lower polariton (radiative pumping), which then emits. In contrast, for excitonic J-aggregates with a negligible Stokes shift, the fluorescing state does not provide an efficient relaxation gateway. Instead, the relaxation is mediated by exchanging energy quanta matching the energy gap between the dark states and lower polariton into vibrational modes (vibrationally assisted scattering). To understand better how the fluorescing state of a molecule that is not strongly coupled to the cavity can transfer its excitation energy to the lower polariton in the radiative pumping mechanism, we performed multi-scale molecular dynamics simulations. The results of these simulations suggest that non-adiabatic couplings between uncoupled molecules and the polaritons are the driving force for this energy transfer process.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.ispartofseriesJournal of Chemical Physics
dc.rightsIn Copyright
dc.titleEffect of molecular Stokes shift on polariton dynamics
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202104232472
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange154303
dc.relation.issn0021-9606
dc.relation.numberinseries15
dc.relation.volume154
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 Author(s).
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber290677
dc.relation.grantnumber323995
dc.relation.grantnumber289947
dc.relation.grantnumber323996
dc.subject.ysosähkömagnetismi
dc.subject.ysopolaritonit
dc.subject.ysomolekyylifysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9447
jyx.subject.urihttp://www.yso.fi/onto/yso/p38894
jyx.subject.urihttp://www.yso.fi/onto/yso/p17059
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/5.0037896
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland (Grant Nos. 289947, 290677, 323995, and 323996; G.G. and J.J.T.)
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright