Show simple item record

dc.contributor.authorRainer, Rudolf
dc.contributor.authorSiltakoski, Jarkko
dc.contributor.authorStanin, Thomas
dc.date.accessioned2021-04-09T09:08:34Z
dc.date.available2021-04-09T09:08:34Z
dc.date.issued2022
dc.identifier.citationRainer, R., Siltakoski, J., & Stanin, T. (2022). An evolutionary Haar-Rado type theorem. <i>Manuscripta Mathematica</i>, <i>168</i>(1-2), 65-88. <a href="https://doi.org/10.1007/s00229-021-01293-8" target="_blank">https://doi.org/10.1007/s00229-021-01293-8</a>
dc.identifier.otherCONVID_66333684
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75004
dc.description.abstractIn this paper, we study variational solutions to parabolic equations of the type ∂t u −divx (Dξ f (Du))+ Du g(x, u) = 0, where u attains time-independent boundary values u0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values u0 admit a modulus of continuity ω and the estimate |u(x, t)−u0(γ )| ≤ ω(|x −γ |) holds, then u admits the same modulus of continuity in the spatial variable.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesManuscripta Mathematica
dc.rightsCC BY 4.0
dc.titleAn evolutionary Haar-Rado type theorem
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202104092316
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange65-88
dc.relation.issn0025-2611
dc.relation.numberinseries1-2
dc.relation.volume168
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2021
dc.rights.accesslevelopenAccessfi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysovariaatiolaskenta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00229-021-01293-8
jyx.fundinginformationOpen access funding provided by Paris Lodron University of Salzburg.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0