dc.contributor.author | Cox, Sonja | |
dc.contributor.author | Geiss, Stefan | |
dc.date.accessioned | 2021-03-23T08:37:43Z | |
dc.date.available | 2021-03-23T08:37:43Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Cox, S., & Geiss, S. (2021). On Decoupling in Banach Spaces. <i>Journal of Theoretical Probability</i>, <i>34</i>(3), 1179-1212. <a href="https://doi.org/10.1007/s10959-021-01085-6" target="_blank">https://doi.org/10.1007/s10959-021-01085-6</a> | |
dc.identifier.other | CONVID_52069690 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74725 | |
dc.description.abstract | We consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process can be approximated by a Haar-type expansion in which only the pre-specified conditional distributions appear. Moreover, we show that in our framework a progressive enlargement of the underlying filtration does not affect the decoupling properties (in particular, it does not affect the constants involved). As a special case, we deal with one-sided moment inequalities for decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–Gundy-type inequalities for stochastic integrals of X-valued processes can be obtained from decoupling inequalities for X-valued dyadic martingales. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Theoretical Probability | |
dc.rights | CC BY 4.0 | |
dc.subject.other | decoupling in Banach spaces | |
dc.subject.other | regular conditional probabilities | |
dc.subject.other | dyadic martingales | |
dc.subject.other | stochastic integration | |
dc.title | On Decoupling in Banach Spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202103232061 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1179-1212 | |
dc.relation.issn | 0894-9840 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 34 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 298641 | |
dc.subject.yso | Banachin avaruudet | |
dc.subject.yso | stokastiset prosessit | |
dc.subject.yso | funktionaalianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38972 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s10959-021-01085-6 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | The first author is supported by the research program VENI Vernieuwingsimpuls with Project Number 639.031.549, which is financed by the Netherlands Organization for Scientific Research (NWO). The second author is supported by the project Stochastic Analysis and Nonlinear Partial Differential Equations, Interactions and Applications of the Academy of Finland with Project Number 298641. The authors wish to thank Mark Veraar, Peter Spreij, and an anonymous referee. The first author would also like to thank Lotte Meijer. Open access funding provided by University of Jyväskylä (JYU). | |
dc.type.okm | A1 | |