Näytä suppeat kuvailutiedot

dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2021-03-09T13:34:33Z
dc.date.available2021-03-09T13:34:33Z
dc.date.issued2021
dc.identifier.citationOrponen, T. (2021). Combinatorial proofs of two theorems of Lutz and Stull. <i>Mathematical proceedings of the Cambridge Philosophical Society</i>, <i>171</i>(3), 503-514. <a href="https://doi.org/10.1017/S0305004120000328" target="_blank">https://doi.org/10.1017/S0305004120000328</a>
dc.identifier.otherCONVID_51784739
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74553
dc.description.abstractRecently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if K⊂Rn is any set with equal Hausdorff and packing dimensions, then dimHπe(K)=min{dimHK,1} for almost everye ∈Sn−1. Here π estands for orthogonal projection to span(e). The primary purpose of this paper is to present proofs for Lutz and Stull’s projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatorial-geometric arguments, such as discretised versions of Kaufman’s “potential theoretic” method, the pigeonhole principle, and a lemma of Katz and Tao. A secondary purpose is to generalise Lutz and Stull’s theorems: the versions in this paper apply to orthogonal projections tom-planes in Rn, for all 0en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherCambridge University Press (CUP)
dc.relation.ispartofseriesMathematical proceedings of the Cambridge Philosophical Society
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherHausdorff and packing measures
dc.titleCombinatorial proofs of two theorems of Lutz and Stull
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202103091905
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange503-514
dc.relation.issn0305-0041
dc.relation.numberinseries3
dc.relation.volume171
dc.type.versionacceptedVersion
dc.rights.copyright© Cambridge Philosophical Society 2021
dc.rights.accesslevelopenAccessfi
dc.subject.ysofraktaalit
dc.subject.ysomittateoria
dc.subject.ysokombinatoriikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p4745
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1017/S0305004120000328
jyx.fundinginformationThe author was supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0