Näytä suppeat kuvailutiedot

dc.contributor.authorGuo, Fu-Sheng
dc.contributor.authorTsoureas, Nikolaos
dc.contributor.authorHuang, Guo-Zhang
dc.contributor.authorTong, Ming-Liang
dc.contributor.authorMansikkamäki, Akseli
dc.contributor.authorLayfield, Richard A.
dc.date.accessioned2021-03-03T12:34:02Z
dc.date.available2021-03-03T12:34:02Z
dc.date.issued2020
dc.identifier.citationGuo, F.-S., Tsoureas, N., Huang, G.-Z., Tong, M.-L., Mansikkamäki, A., & Layfield, R. A. (2020). Isolation of a Perfectly Linear Uranium(II) Metallocene. <i>Angewandte Chemie</i>, <i>59</i>(6), 2299-2303. <a href="https://doi.org/10.1002/anie.201912663" target="_blank">https://doi.org/10.1002/anie.201912663</a>
dc.identifier.otherCONVID_34186179
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74491
dc.description.abstractReduction of the uranium(III) metallocene [(eta(5)-(C5Pr5)-Pr-i)(2)UI] (1) with potassium graphite produces the "second-generation" uranocene [(eta(5)-(C5Pr5)-Pr-i)(2)U] (2), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground-state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f(3) 6d(1). Appreciable covalent contributions to the metal-ligand bonds were determined from a computational study of 2, including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbitals with essentially pure 5f character, the fourth electron resides in an orbital defined by strong 7s-6dz2 mixing.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherWiley-VCH Verlag
dc.relation.ispartofseriesAngewandte Chemie
dc.rightsIn Copyright
dc.subject.otherchemical bonding
dc.subject.otherelectronic structure
dc.subject.othermagnetic properties
dc.subject.othermetallocenes
dc.subject.otheruranium
dc.titleIsolation of a Perfectly Linear Uranium(II) Metallocene
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202103031853
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2299-2303
dc.relation.issn1433-7851
dc.relation.numberinseries6
dc.relation.volume59
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoorganometalliyhdisteet
dc.subject.ysokemialliset sidokset
dc.subject.ysouraani
dc.subject.ysomagneettiset ominaisuudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28123
jyx.subject.urihttp://www.yso.fi/onto/yso/p10130
jyx.subject.urihttp://www.yso.fi/onto/yso/p11691
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1002/anie.201912663
jyx.fundinginformationWe thank the ERC (CoG 646740), the EPSRC (EP/M022064/1), the NSF China (projects 21620102002, 21821003), the National Key Research and Development Program of China (2018YFA0306001), the Magnus Ehrnrooth Foundation, the CSC‐IT Center for Science in Finland, the Finnish Grid and Cloud Infrastructure (urn:nbn:fi:research‐infras‐2016072533), and Prof. H. M. Tuononen (University of Jyväskylä) for computational resources.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright