Radiation hardness assurance through system-level testing : risk acceptance, facility requirements, test methodology and data exploitation

Abstract
Functional verification schemes at a level different than component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricting intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system in general because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test are provided to allow understanding which information can be extracted from these kinds of functional verification schemes in order to compare them with the reliability and availability requirements. The use of a general scaling factor for the observed high-level cross-sections allows converting test cross-sections into orbit rates.
Language
English
Published in
IEEE Transactions on Nuclear Science
Citation
  • Coronetti, A., Garcìa Alìa, R., Budroweit, J., Rajkowski, T., Da Costa Lopes, I., Niskanen, K., Söderström, D., Cazzaniga, C., Ferraro, R., Danzeca, S., Mekki, J., Manni, F., Dangla, D., Virmontois, C., Kerboub, N., Koelpin, A., Saigné, F., Wang, P., Pouget, V., . . . Coq Germanicus, R. (2021). Radiation hardness assurance through system-level testing : risk acceptance, facility requirements, test methodology and data exploitation. IEEE Transactions on Nuclear Science, 68(5), 958-969. https://doi.org/10.1109/TNS.2021.3061197
License
CC BY 4.0Open Access
Funder(s)
European Commission
Funding program(s)
MSCA Innovative Training Networks (ITN)
MSCA Innovative Training Networks (ITN)
European Commission
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.
Additional information about funding
This study has received funding from the European Union’s Horizon 2020 research and innovation programme under the MSC grant agreement no. 721624.
Copyright© 2021 the Authors

Share