Näytä suppeat kuvailutiedot

dc.contributor.authorBehravesh, Erfan
dc.contributor.authorMelander, Marko M.
dc.contributor.authorWärnå, Johan
dc.contributor.authorSalmi, Tapio
dc.contributor.authorHonkala, Karoliina
dc.contributor.authorMurzin, Dmitry Yu.
dc.date.accessioned2021-03-01T07:02:03Z
dc.date.available2021-03-01T07:02:03Z
dc.date.issued2021
dc.identifier.citationBehravesh, E., Melander, M. M., Wärnå, J., Salmi, T., Honkala, K., & Murzin, D. Y. (2021). Oxidative Dehydrogenation of Ethanol on Gold : Combination of Kinetic Experiments and Computation Approach to Unravel the Reaction Mechanism. <i>Journal of Catalysis</i>, <i>394</i>, 193-205. <a href="https://doi.org/10.1016/j.jcat.2020.07.022" target="_blank">https://doi.org/10.1016/j.jcat.2020.07.022</a>
dc.identifier.otherCONVID_41688677
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74434
dc.description.abstractSelective alcohol dehydrogenation on heterogeneous catalysts is a key industrial reaction for production of aldehydes, ketones, and carboxylic compounds. Design of catalysts with improved activity and selectivity requires understanding of the reaction mechanism and kinetics. Herein, experiments, density functional theory (DFT) and kinetic modelling were combined to elucidate the mechanism and kinetics of ethanol oxidative dehydrogenation to acetaldehyde on gold catalysts. Catalytic experiments clearly emphasized the role of oxygen in this reaction. Ethanol conversion was rather independent on the gold cluster size. Formation of minor products, acetic acid and ethyl acetate was structure sensitive as on smaller clusters ethanol is less prone to oxidation reacting more efficiently with acetic acid to ethyl acetate. DFT calculations indicated that the activation of molecular oxygen is facilitated by the hydrogen bond donor e.g., ethanol, leading to hydrogen abstraction from the bond donor and formation of an OOH intermediate followed by its facile dissociation. Furthermore, the calculations show that ethanol oxidation along such pathway is thermodynamically feasible on smooth Au(111) facets. The kinetic model developed based on the concept of ethanol mediated activation of oxygen derived from DFT studies, qualitatively and quantitatively by data fitting reproduces experimental observations on ethanol oxidative dehydrogenation over gold on alumina catalyst. The concentration profiles in the catalyst particle were calculated numerically to evaluate the role of diffusion in the catalyst pores. Combining experiments and DFT with kinetic modelling provides a powerful way to unravel the mechanisms and kinetics of heterogeneous catalytic reactions.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Catalysis
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherethanol oxidation
dc.subject.othergold
dc.subject.othermechanism
dc.subject.otherkinetics
dc.subject.otherDFT
dc.titleOxidative Dehydrogenation of Ethanol on Gold : Combination of Kinetic Experiments and Computation Approach to Unravel the Reaction Mechanism
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202103011802
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange193-205
dc.relation.issn0021-9517
dc.relation.volume394
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier Inc. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307853
dc.subject.ysokatalyysi
dc.subject.ysokemialliset reaktiot
dc.subject.ysoasetaldehydi
dc.subject.ysoetanoli
dc.subject.ysokulta
dc.subject.ysoreaktiomekanismit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8704
jyx.subject.urihttp://www.yso.fi/onto/yso/p3658
jyx.subject.urihttp://www.yso.fi/onto/yso/p22746
jyx.subject.urihttp://www.yso.fi/onto/yso/p10108
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p21536
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.jcat.2020.07.022
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationThis work is a part of the activities of Johan Gadolin Process Chemistry Centre (PCC) at Åbo Akademi University. EB acknowledges Graduate School in Chemical Engineering (GSCE) for a PhD grant. TS acknowledges the Academy Professor grant (project 319002) from Academy of Finland. MMM acknowledges support from the Alfred Kordelin foundation and the Academy of Finland for the post-doctoral grant (project 307853). The computer resources were provided by CSC - IT Center for Science Ltd.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0