Modelling musical cognition with artificial neural networks
As a highly abstract form of human activity, music is a challenging realm to study. During the last ten years, the connectionist paradigm has provided insights into many domains of human behaviour, including musical activity and experience. Artificial neural networks, or connectionist systems, can be characterized as strongly idealized models of networks formed by biological neurons: consisting of a bulk of simple interconnected processing units, they employ parallel distributed processing and are capable of learning and self-organizing. The present study focuses on aspects of musical cognition such as perceptual learning, self-organization, feature extraction, sequential processing, autoassociative recall, and short-term memory. More specifically, processes related to the classification and recognition of musical timbre and the learning and generation of melodies are modelled using artificial neural networks. The results support the view that the connectionist paradigm provides a plausible alternative for modelling the dynamics of certain music-related cognitive processes. Being inherently capable of generalizing, associating on the basis of content, and tolerating noisy or distorted input, artificial neural networks exhibit functions characteristic of the human way of perceiving, thinking, and acting.
...
ISBN
978-951-39-7890-7Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Toiviainen, P. (1992). The organisation of timbres: a two-stage neural network model. In G. Widmer (Ed.), Workshop Notes of the ECAI 92 Workshop on Artificial Intelligence and Music. Vienna: ECCAI.
- Artikkeli II: Toiviainen, P., Kaipainen, M. & Louhivuori, J. 1995. Musical timbre: similarity ratings correlate with computational feature space distances. Journal of New Music Research, 24(3), 282-298.
- Artikkeli III: Toiviainen, P. (1996). Optimizing auditory images and distance metrics for self-organizing timbre maps. Journal of New Music Research, 25(1), 1-30. DOI: 10.1080/09298219608570695
- Artikkeli IV: Toiviainen, P. (1995). Modeling the target-note technique of bebopstyle jazz improvisation: an artificial neural network approach. Music Perception, 12(4), 399-413. DOI: 10.2307/40285674
- Artikkeli V: Järvinen, T. & Toiviainen, P. (1995). Connectionist jazz and tonal hierarchy: a statistical multilevel analysis. Submitted.
- Artikkeli VI: Kaipainen, M., Toiviainen, P. & Louhivuori, J. (1995). A self-organizing map that recognizes and generates melodies. In Pylkkanen, P. & Pylkko, P. (Eds.), New directions in cognitive science. Publications of the Finnish Artificial Intelligence Society, 286-315.
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3578]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Impact of Regularization on Convolutional Neural Networks
Zeeshan, Khaula (2018)Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ... -
Using deep neural networks for kinematic analysis : challenges and opportunities
Cronin, Neil J. (Elsevier BV, 2021)Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ... -
Computational Rationality as a Theory of Interaction
Oulasvirta, Antti; Jokinen, Jussi P. P.; Howes, Andrew (ACM, 2022)How do people interact with computers? This fundamental question was asked by Card, Moran, and Newell in 1983 with a proposition to frame it as a question about human cognition – in other words, as a matter of how information ... -
Artificial intelligence and other minds : the search for strong AI
Vesterinen, Oskari (2019)Tämän tutkielman tarkoituksena on tutkia tietoisen eli ns. ”vahvan” tekoälyn mahdollisuutta. Tutkielma lähestyy tutkimuskysymystään kolmen keskeisen näkökulman kautta: Alan Turingin esittämän Turingin testin, filosofi John ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.