Näytä suppeat kuvailutiedot

dc.contributor.authorApushkinskaya, Darya E.
dc.contributor.authorRepin, Sergey I.
dc.date.accessioned2021-01-26T12:07:21Z
dc.date.available2021-01-26T12:07:21Z
dc.date.issued2020
dc.identifier.citationApushkinskaya, D. E., & Repin, S. I. (2020). Biharmonic Obstacle Problem : Guaranteed and Computable Error Bounds for Approximate Solutions. <i>Computational mathematics and mathematical physics</i>, <i>60</i>(11), 1823-1838. <a href="https://doi.org/10.1134/S0965542520110032" target="_blank">https://doi.org/10.1134/S0965542520110032</a>
dc.identifier.otherCONVID_47671216
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73818
dc.description.abstractThe paper is concerned with an elliptic variational inequality associated with a free boundary obstacle problem for the biharmonic operator. We study the bounds of the difference between the exact solution (minimizer) of the corresponding variational problem and any function (approximation) from the energy class satisfying the prescribed boundary conditions and the restrictions stipulated by the obstacle. Using the general theory developed for a wide class of convex variational problems we deduce the error identity. One part of this identity characterizes the deviation of the function (approximation) from the exact solution, whereas the other is a fully computed value (it depends only on the data of the problem and known functions). In real life computations, this identity can be used to control the accuracy of approximate solutions. The measure of deviation from the exact solution used in the error identity contains terms of different nature. Two of them are the norms of the difference between the exact solutions (of the direct and dual variational problems) and corresponding approximations. Two others are not representable as norms. These are nonlinear measures vanishing if the coincidence set defined by means of an approximate solution satisfies certain conditions (for example, coincides with the exact coincidence set). The error identity is true for any admissible (conforming) approximations of the direct variable, but it imposes some restrictions on the dual variable. We show that these restrictions can be removed, but in this case the identity is replaced by an inequality. For any approximations of the direct and dual variational problems, the latter gives an explicitly computable majorant of the deviation from the exact solution. Several examples illustrating the established identities and inequalities are presented.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherPleiades Publishing
dc.relation.ispartofseriesComputational mathematics and mathematical physics
dc.rightsIn Copyright
dc.subject.othervariational inequalities
dc.subject.otherestimates of the distance to the exact solution
dc.subject.otheraposteriori estimates
dc.titleBiharmonic Obstacle Problem : Guaranteed and Computable Error Bounds for Approximate Solutions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202101261278
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1823-1838
dc.relation.issn0965-5425
dc.relation.numberinseries11
dc.relation.volume60
dc.type.versionacceptedVersion
dc.rights.copyright© Pleiades Publishing 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoepäyhtälöt
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysoapproksimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15720
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1134/S0965542520110032
jyx.fundinginformationThe first author was supported by the German Research Foundation (grant no. AP 252/3-1) and by the “RUDN University program 5-100”.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright