Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al
Kankainen, A., Woods, P.J., Doherty, D.T., Albers, H.M., Albers, M., Ayangeakaa, A.D., Carpenter, M.P., Chiara, C.J., Harker, J.L., Janssens, R.V.F., Lederer-Woods, C., Seweryniak, D., Strieder, F., & Zhu, S. (2021). Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al. Physics Letters B, 813, Article 136033. https://doi.org/10.1016/j.physletb.2020.136033
Published in
Physics Letters BAuthors
Date
2021Copyright
© 2020 The Authors. Published by Elsevier B.V.
The 92-keV resonance in the 25Mg(p,γ)26Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26gAl, or isomeric state, 26mAl. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f0=0.52(2)stat(6)syst. The f0 value is the most precise reported to date, and at the lower end of the range of previously adopted values, implying a lower production rate of 26gAl and its cosmic 1809-keV γ rays.
Publisher
Elsevier BVISSN Search the Publication Forum
0370-2693Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/47529576
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
ERC Consolidator Grant; Academy Research Fellow, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
This work was supported by The U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-O6CH11357. This research used resources of ANL's ATLAS facility which is a DOE office of Science User Facility. The support from STFC under grant ST/J00006X/1 is gratefully acknowledged. A.K. acknowledges the funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN) and Academy of Finland grant No. 275389. This work was supported by The U.S. Department of Energy (DOE), Office of Nuclear Physics, under Grants No. DE-FG02-97ER41033 (TUNL), DE-FG02-97ER41041 (UNC) and DE-FG02-94ER40834 (UMD). C.L.W. acknowledges support from the Austrian Science Fund (FWF): J3503 ...License
Related items
Showing items with similar title or keywords.
-
Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine
Yerezhep, N.; Trzaska, W.H.; Bezrukov, L.; Enqvist, T.; Kuusiniemi, P.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Slupecki, M.; Saduyev, N.O.; Baktoraz, A.; Mukhamejanov, Y. (al-Farabi Kazakh National University, 2020)High energy particles reaching the Earth’s atmosphere are known as cosmic rays. As a result of interactions with nuclei of air molecules, cosmic rays induce showers of secondary particles, which can be divided into 3 ... -
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
Canete, L.; Lotay, G.; Christian, G.; Doherty, D. T.; Catford, W. N.; Hallam, S.; Seweryniak, D.; Albers, H. M.; Almaraz-Calderon, S.; Bennett, E. A.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; José, J.; Kankainen, A.; Lauritsen, T.; Matta, A.; Moukaddam, M.; Ota, S.; Saastamoinen, A.; Wilkinson, R.; Zhu, S. (American Physical Society (APS), 2021)The astrophysical 25Al(p,γ)26Si reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic 26Al ejected from classical novae. Specifically, the strengths of key proton-unbound ... -
Revised decay properties of the key 93-keV resonance in the 25Mg(p,γ) reaction and its influence on the MgAl cycle in astrophysical environments
Lotay, G.; Doherty, D. T.; Janssens, R. V. F.; Seweryniak, D.; Albers, H. M.; Almaraz-Calderon, S.; Carpenter, M. P.; Champagne, A. E.; Chiara, C. J.; Hoffman, C. R.; Iliadis, C.; Kankainen, A.; Lauritsen, T.; Zhu, S. (American Physical Society (APS), 2022)The γ-decay properties of an excited state in 26Al at 6398.3(8) keV have been reexamined using the 11B+16O fusion-evaporation reaction. This level represents a key 93.1(8)-keV resonance in the 25Mg+p system and its relative ... -
Women Scientists Who Made Nuclear Astrophysics
Hampton, Christine V.; Lugaro, Maria; Papakonstantinou, Panagiota; Isar, P. Gina; Nordström, Birgitta; Özkan, Nalan; Aliotta, Marialuisa; Ćiprijanović, Aleksandra; Curtis, Sanjana; Di Criscienzo, Marcella; den Hartogh, Jacqueline; Font, Andreea S.; Kankainen, Anu; Kobayashi, Chiaki; Lederer-Woods, Claudia; Niemczura, Ewa; Rauscher, Thomas; Spyrou, Artemis; Van Eck, Sophie; Yavahchova, Mariya; Chantereau, William; de Mink, Selma E.; Kaiser, Etienne A.; Thielemann, Friedrich-Karl; Travaglio, Claudia; Venkatesan, Aparna; Collet, Remo (Springer, 2019)Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one’s social, gender, or racial group (Fine in Delusion of Gender. W.W. Norton & Co., ... -
Ion traps in nuclear physics : recent results and achievements
Eronen, Tommi; Kankainen, Anu; Äystö, Juha (Pergamon, 2016)Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for ...