Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al
Abstract
The 92-keV resonance in the 25Mg(p,γ)26Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26gAl, or isomeric state, 26mAl. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f0=0.52(2)stat(6)syst. The f0 value is the most precise reported to date, and at the lower end of the range of previously adopted values, implying a lower production rate of 26gAl and its cosmic 1809-keV γ rays.
Main Authors
Format
Articles
Research article
Published
2021
Series
Subjects
Publication in research information system
Publisher
Elsevier BV
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202012297432Use this for linking
Review status
Peer reviewed
ISSN
0370-2693
DOI
https://doi.org/10.1016/j.physletb.2020.136033
Language
English
Published in
Physics Letters B
Citation
- Kankainen, A., Woods, P.J., Doherty, D.T., Albers, H.M., Albers, M., Ayangeakaa, A.D., Carpenter, M.P., Chiara, C.J., Harker, J.L., Janssens, R.V.F., Lederer-Woods, C., Seweryniak, D., Strieder, F., & Zhu, S. (2021). Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al. Physics Letters B, 813, Article 136033. https://doi.org/10.1016/j.physletb.2020.136033
Funder(s)
European Commission
Research Council of Finland
Funding program(s)
ERC Consolidator Grant
Academy Research Fellow, AoF
ERC Consolidator Grant
Akatemiatutkija, SA



Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.
Additional information about funding
This work was supported by The U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-O6CH11357. This research used resources of ANL's ATLAS facility which is a DOE office of Science User Facility. The support from STFC under grant ST/J00006X/1 is gratefully acknowledged. A.K. acknowledges the funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN) and Academy of Finland grant No. 275389. This work was supported by The U.S. Department of Energy (DOE), Office of Nuclear Physics, under Grants No. DE-FG02-97ER41033 (TUNL), DE-FG02-97ER41041 (UNC) and DE-FG02-94ER40834 (UMD). C.L.W. acknowledges support from the Austrian Science Fund (FWF): J3503
Copyright© 2020 The Authors. Published by Elsevier B.V.