Näytä suppeat kuvailutiedot

dc.contributor.authorMelander, Marko M.
dc.date.accessioned2020-12-23T09:46:24Z
dc.date.available2020-12-23T09:46:24Z
dc.date.issued2020
dc.identifier.citationMelander, M. M. (2020). Grand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I : General Formulation and Proton-coupled Electron Transfer Reactions. <i>Journal of the Electrochemical Society</i>, <i>167</i>(11), Article 116518. <a href="https://doi.org/10.1149/1945-7111/aba54b" target="_blank">https://doi.org/10.1149/1945-7111/aba54b</a>
dc.identifier.otherCONVID_42677197
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73407
dc.description.abstractElectrochemical interfaces present a serious challenge for atomistic modelling. Electrochemical thermodynamics are naturally addressed within the grand canonical ensemble (GCE) but the lack of a fixed potential rate theory impedes fundamental understanding and computation of electrochemical rate constants. Herein, a generally valid electrochemical rate theory is developed by extending equilibrium canonical rate theory to the GCE. The extension provides a rigorous framework for addressing classical reactions, nuclear tunneling and other quantum effects, non-adiabaticity etc. from a single unified theoretical framework. The rate expressions can be parametrized directly with self-consistent GCE-DFT methods. These features enable a well-defined first principles route to addressing reaction barriers and prefactors (proton-coupled) electron transfer reactions at fixed potentials. Specific rate equations are derived for adiabatic classical transition state theory and adiabatic GCE empirical valence bond (GCE-EVB) theory resulting in a Marcus-like expression within GCE. From GCE-EVB general free energy relations for electrochemical systems are derived. The GCE-EVB theory is demonstrated by predicting the PCET rates and transition state geometries for the adiabatic Au-catalyzed acidic Volmer reaction using (constrained) GCE-DFT. The work herein provides the theoretical basis and practical computational approaches to electrochemical rates with numerous applications in physical and computational electrochemistry.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElectrochemical Society
dc.relation.ispartofseriesJournal of the Electrochemical Society
dc.rightsIn Copyright
dc.titleGrand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I : General Formulation and Proton-coupled Electron Transfer Reactions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202012237348
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0013-4651
dc.relation.numberinseries11
dc.relation.volume167
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Electrochemical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotermodynamiikka
dc.subject.ysosähkökemia
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysokvanttikemia
dc.subject.ysoteoreettinen tutkimus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p19301
jyx.subject.urihttp://www.yso.fi/onto/yso/p16390
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1149/1945-7111/aba54b
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright